Projets par an
Résumé
For many applications in image analysis, learning models that are invariant to translations and rotations is paramount. This is the case, for example, in medical imaging where the objects of interest can appear at arbitrary positions, with arbitrary orientations. As of today, Convolutional Neural Networks (CNN) are one of the most powerful tools for image analysis. They achieve, thanks to convolutions, an invariance with respect to translations. In this work, we present a new type of convolutional layer that takes advantage of Bessel functions, well known in physics, to build Bessel-CNNs (B-CNNs) that are invariant to all the continuous set of possible rotation angles by design.
langue originale | Anglais |
---|---|
titre | 35th Conference on Neural Information Processing Systems |
Sous-titre | NeurIPS 2021 |
Nombre de pages | 12 |
Volume | 34 |
ISBN (Electronique) | 9781713845393 |
Etat de la publication | Publié - 2021 |
Evénement | 35th Conference on Neural Information Processing Systems - Durée: 6 déc. 2021 → 14 déc. 2021 Numéro de conférence: 35 |
Une conférence
Une conférence | 35th Conference on Neural Information Processing Systems |
---|---|
Titre abrégé | NeurIPS 2021 |
période | 6/12/21 → 14/12/21 |
Empreinte digitale
Examiner les sujets de recherche de « Achieving Rotational Invariance with Bessel-Convolutional Neural Networks ». Ensemble, ils forment une empreinte digitale unique.Projets
- 1 Terminé
-
CÉCI – Consortium des Équipements de Calcul Intensif
CHAMPAGNE, B. (Responsable du Projet), Lazzaroni, R. (Responsable du Projet), Geuzaine , C. (Co-investigateur), Chatelain, P. (Co-investigateur) & Knaepen, B. (Co-investigateur)
1/01/18 → 31/12/22
Projet: Recherche
Équipement
-
Plateforme Technologique Calcul Intensif
Champagne, B. (!!Manager)
Plateforme technologique Calcul intensifEquipement/installations: Plateforme technolgique