Direct flow synthesis of H2O2 catalysed by palladium supported on sulfonated polystyrene resins

Résultats de recherche: Contribution à un événement scientifique (non publié)PosterRevue par des pairs

57 Téléchargements (Pure)


Hydrogen peroxide (H2O2) has a wide application range in industry. It is a strong oxidant used e.g. for bleaching, water treatment, semiconductor wafer cleaning and propylene oxide synthesis. It is produced on large scale by the anthraquinone process to yield highly concentrated (50–70 wt%) product in a routine fashion. Nevertheless, this process is very energy consuming, generates a lot of waste and requires transport of hazardous quantities of H2O2. Therefore, direct H2O2 synthesis (starting from gaseous H2 and O2) has recently emerged as a viable alternative.1 Flow chemistry using microreactor technology has made its entry into this field, offering opportunities for safer and efficient process operation.2
Metal catalysts supported on strongly acidic macroreticular polystyrene resins have also been successfully applied for this transformation.3 In this work, we describe a transfer of this type of catalysis into flow technology. The preparation and characterization of a number of catalysts are described, followed by a presentation of their catalytic performances in the direct H2O2 synthesis. We have been able to obtain more than 2 wt% of H2O2 with selectivities exceeding 30-40% in the best cases. These results are superior to most current literature results regarding direct H2O2 synthesis in flow.
langue originaleAnglais
Nombre de pages1
Etat de la publicationPublié - 17 févr. 2015
EvénementFlow Chemistry Europe 2015 - Berlin, Allemagne
Durée: 17 févr. 201518 févr. 2015

Une conférence

Une conférenceFlow Chemistry Europe 2015
La villeBerlin

Empreinte digitale

Examiner les sujets de recherche de « Direct flow synthesis of H2O2 catalysed by palladium supported on sulfonated polystyrene resins ». Ensemble, ils forment une empreinte digitale unique.

Contient cette citation