Résumé
In order to be useful, visualizations need to be interpretable. This paper uses a user-based approach to combine and assess quality measures in order to better model user preferences. Results show that cluster separability measures are outperformed by a neighborhood conservation measure, even though the former are usually considered as intuitively representative of user motives. Moreover, combining measures, as opposed to using a single measure, further improves prediction performances.
langue originale | Anglais |
---|---|
titre | NIPS Workshop on Interpretable Machine Learning in Complex Systems |
Lieu de publication | Barcelona |
Etat de la publication | Publié - 2016 |
Evénement | Thirtieth Conference on Neural Information Processing Systems - Sagrada Familia, Barcelonne, Espagne Durée: 5 déc. 2016 → 10 déc. 2016 |
Colloque
Colloque | Thirtieth Conference on Neural Information Processing Systems |
---|---|
Titre abrégé | NIPS 2016 (NeurIPS) |
Pays/Territoire | Espagne |
La ville | Barcelonne |
période | 5/12/16 → 10/12/16 |
Empreinte digitale
Examiner les sujets de recherche de « Learning Interpretability for Visualizations using Adapted Cox Models through a User Experiment ». Ensemble, ils forment une empreinte digitale unique.Thèses de l'étudiant
-
Interpretability and Explainability in Machine Learning and their Application to Nonlinear Dimensionality Reduction
Bibal, A. (Auteur), FRENAY, B. (Promoteur), VANHOOF, W. (Président), Cleve, A. (Jury), Dumas, B. (Jury), Lee, J. A. (Jury) & Galarraga, L. (Jury), 16 nov. 2020Student thesis: Doc types › Docteur en Sciences
Fichier