Using Problem Structure in Derivative-free Optimization

    Résultats de recherche: Contribution à un journal/une revueArticleRevue par des pairs

    11 Téléchargements (Pure)

    Résumé

    Derivative-free unconstrained optimization is the class of optimization methods for which the derivatives of the objective function are unavailable. These methods are already well-studied, but are typically restricted to problems involving a small number of variables. The paper discusses how this restriction may be removed by the use the underlying problems structure, both in the case of pattern-search and interpolation methods. The focus is on partially separable objective function, but it is shown how Hessian sparsity, a weaker structure description, can also be used to advantage.
    langue originaleAnglais
    Pages (de - à)11-18
    Nombre de pages8
    journalSIOPT Views and News
    Volume17
    Numéro de publication1
    Etat de la publicationNon publié - 2006

    Empreinte digitale Examiner les sujets de recherche de « Using Problem Structure in Derivative-free Optimization ». Ensemble, ils forment une empreinte digitale unique.

    Contient cette citation