Spontaneous exciton dissociation enables spin state interconversion in delayed fluorescence organic semiconductors

Alexander J. Gillett, Claire Tonnelé, Giacomo Londi, Gaetano Ricci, Manon Catherin, Darcy M.L. Unson, David Casanova, Frédéric Castet, Yoann Olivier, Weimin M. Chen, Elena Zaborova, Emrys W. Evans, Bluebell H. Drummond, Patrick J. Conaghan, Lin Song Cui, Neil C. Greenham, Yuttapoom Puttisong, Frédéric Fages, David Beljonne, Richard H. Friend

Résultats de recherche: Contribution à un journal/une revueArticleRevue par des pairs


Engineering a low singlet-triplet energy gap (ΔEST) is necessary for efficient reverse intersystem crossing (rISC) in delayed fluorescence (DF) organic semiconductors but results in a small radiative rate that limits performance in LEDs. Here, we study a model DF material, BF2, that exhibits a strong optical absorption (absorption coefficient = 3.8 × 105cm−1) and a relatively large ΔEST of 0.2 eV. In isolated BF2 molecules, intramolecular rISC is slow (delayed lifetime = 260 μs), but in aggregated films, BF2 generates intermolecular charge transfer (inter-CT) states on picosecond timescales. In contrast to the microsecond intramolecular rISC that is promoted by spin-orbit interactions in most isolated DF molecules, photoluminescence-detected magnetic resonance shows that these inter-CT states undergo rISC mediated by hyperfine interactions on a ~24 ns timescale and have an average electron-hole separation of ≥1.5 nm. Transfer back to the emissive singlet exciton then enables efficient DF and LED operation. Thus, access to these inter-CT states, which is possible even at low BF2 doping concentrations of 4 wt%, resolves the conflicting requirements of fast radiative emission and low ΔEST in organic DF emitters.

langue originaleAnglais
Numéro d'article6640
journalNature Communications
Numéro de publication1
Les DOIs
Etat de la publicationPublié - déc. 2021

Empreinte digitale

Examiner les sujets de recherche de « Spontaneous exciton dissociation enables spin state interconversion in delayed fluorescence organic semiconductors ». Ensemble, ils forment une empreinte digitale unique.

Contient cette citation