Evaluation complexity for nonlinear constrained optimization using unscaled KKT conditions and high-order models

Ernesto Birgin, John Gardenghi, José-Mario Martinez, Sandra Santos, Philippe Toint

Résultats de recherche: Contribution à un journal/une revueArticle

5 Téléchargements (Pure)

Résumé

The evaluation complexity of general nonlinear, possibly nonconvex,
constrained optimization is analyzed. It is shown that, under suitable
smoothness conditions, an $\epsilon$-approximate first-order critical
point of the problem can be computed in order $O(\epsilon^{1-2(p+1)/p})$ evaluations of the problem's function and their first $p$ derivatives. This is achieved by using a two-phases algorithm inspired by Cartis, Gould, and
Toint (2011, 2013). It is also shown that strong guarantees (in terms of handling degeneracies) on the possible limit points of the sequence of iterates generated by this algorithm can be obtained at the cost of increased complexity. At variance with previous results, the $\epsilon$-approximate first-order criticality is defined by satisfying a version of the KKT conditions with an accuracy that does not depend on the size of the Lagrange multipliers.
langue originaleAnglais
Nombre de pages20
journalSIAM Journal on Optimization
Volume26
Numéro de publication2
Etat de la publicationPublié - 2016

    Empreinte digitale

Contient cette citation