Adaptive regularization algorithms with inexact evaluations for nonconvex optimization

Stefania Bellavia, Gianmarco Gurioli, Benedetta Morini, Philippe Toint

Résultats de recherche: Contribution à un journal/une revueArticleRevue par des pairs

38 Téléchargements (Pure)


A regularization algorithm using inexact function values and inexact derivatives is proposed and its evaluation complexity analyzed. This algorithm is applicable to unconstrained problems and to problems with inexpensive constraints (that is, constraints whose evaluation and enforcement has negligible cost) under the assumption that the derivative of highest degree is β-Hölder continuous. It features a very flexible adaptive mechanism for determining the inexactness which is allowed, at each iteration, when computing objective function values and derivatives. The complexity analysis covers arbitrary optimality order and arbitrary degree of available approximate derivatives. It extends results of Cartis, Gould, and Toint [SIAM J. Optim., to appear] on the evaluation complexity to the inexact case: if a qth-order minimizer is sought using approximations to the first p derivatives, it is proved that a suitable approximate minimizer within ε is computed by the propposed algorithm in at most O[Formula presented] iterations and at most O[Formula presented] approximate evaluations. An algorithmic variant, although more rigid in practice, can be proved to find such an approximate minimizer in O[Formula presented] evaluations. While the proposed framework remains so far conceptual for high degrees and orders, it is shown to yield simple and computationally realistic inexact methods when specialized to the unconstrained and bound-constrained first- and second-order cases. The deterministic complexity results are finally extended to the stochastic context, yielding adaptive sample-size rules for subsampling methods typical of machine learning.

langue originaleAnglais
Pages (de - à)2881-2915
Nombre de pages35
journalSIAM Journal on Optimization
Numéro de publication4
Les DOIs
Etat de la publicationPublié - 2 janv. 2020

Empreinte digitale

Examiner les sujets de recherche de « Adaptive regularization algorithms with inexact evaluations for nonconvex optimization ». Ensemble, ils forment une empreinte digitale unique.

Contient cette citation