Species and tissues specific differentiation of processed animal proteins in aquafeeds using proteomics tools

J. D. Rasinger, Hélène Marbaix, Marc Dieu, O. Fumière, S. Mauro, M. Palmblad, Martine Raes, M. H G Berntssen

Research output: Contribution to journalArticlepeer-review

Abstract

The rapidly growing aquaculture industry drives the search for sustainable protein sources in fish feed. In the European Union (EU) since 2013 non-ruminant processed animal proteins (PAP) are again permitted to be used in aquafeeds. To ensure that commercial fish feeds do not contain PAP from prohibited species, EU reference methods were established. However, due to the heterogeneous and complex nature of PAP complementary methods are required to guarantee the safe use of this fish feed ingredient. In addition, there is a need for tissue specific PAP detection to identify the sources (i.e. bovine carcass, blood, or meat) of illegal PAP use. In the present study, we investigated and compared different protein extraction, solubilisation and digestion protocols on different proteomics platforms for the detection and differentiation of prohibited PAP. In addition, we assessed if tissue specific PAP detection was feasible using proteomics tools. All work was performed independently in two different laboratories. We found that irrespective of sample preparation gel-based proteomics tools were inappropriate when working with PAP. Gel-free shotgun proteomics approaches in combination with direct spectral comparison were able to provide quality species and tissue specific data to complement and refine current methods of PAP detection and identification. Significance To guarantee the safe use of processed animal protein (PAP) in aquafeeds efficient PAP detection and monitoring tools are required. The present study investigated and compared various proteomics workflows and shows that the application of shotgun proteomics in combination with direct comparison of spectral libraries provides for the desired species and tissue specific classification of this heat sterilized and pressure treated (≥ 133 °C, at 3 bar for 20 min) protein feed ingredient.

Original languageEnglish
Pages (from-to)125-131
Number of pages7
JournalJournal of Proteomics
Volume147
DOIs
Publication statusPublished - 16 Sep 2016

Keywords

  • Aquafeeds
  • Data mining
  • Feed safety
  • Processed animal protein
  • Shotgun proteomics

Fingerprint

Dive into the research topics of 'Species and tissues specific differentiation of processed animal proteins in aquafeeds using proteomics tools'. Together they form a unique fingerprint.

Cite this