Model checking adaptive software with featured transition systems

Résultats de recherche: Contribution dans un livre/un catalogue/un rapport/dans les actes d'une conférenceChapitre

188 Téléchargements (Pure)

Résumé

We propose to see adaptive systems as systems with highly dynamic features. We model as features both the reconfigurations of the system, but also the changes of the environment, such as failure modes. The resilience of the system can then be defined as the fact that the system can select an adequate reconfiguration for each possible change of the environment. We must take into account that reconfiguration is often a major undertaking for the system: it has a high cost and it might make functions of the system unavailable for some time. These constraints are domain-specific. In this paper, we therefore provide a modelling language to describe these aspects, and a property language to describe the requirements on the adaptive system. We design algorithms that determine how the system must reconfigure itself to satisfy its intended requirements. © 2013 Springer-Verlag.
langue originaleAnglais
titreLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Sous-titrePrinciples, Models, and Techniques
rédacteurs en chefJavier Cámara, Rogério de Lemos, Carlo Ghezzi , Antónia Lopes
Lieu de publicationHeidelberg Dordrecht London New York
EditeurSpringer
Pages1-29
Nombre de pages29
Volume7740
ISBN (Electronique)978-3-642-36249-1
ISBN (imprimé)978-3-642-36248-4
Les DOIs
étatPublié - 1 janv. 2013

Série de publications

NomLecture Notes in Computer Science

    Empreinte digitale

Contient cette citation

Cordy, M., Classen, A., Heymans, P., Legay, A., & Schobbens, P. (2013). Model checking adaptive software with featured transition systems. Dans J. Cámara, R. de Lemos, C. Ghezzi , & A. Lopes (eds.), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Principles, Models, and Techniques (Vol 7740, p. 1-29). (Lecture Notes in Computer Science). Heidelberg Dordrecht London New York: Springer. https://doi.org/10.1007/978-3-642-36249-1