
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.beUniversity of Namur

Model checking adaptive software with featured transition systems

Cordy, Maxime; Classen, Andreas; Heymans, Patrick; Legay, Axel; Schobbens, Pierre

Published in:
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics)

DOI:
10.1007/978-3-642-36249-1

Publication date:
2013

Document Version
Peer reviewed version

Link to publication
Citation for pulished version (HARVARD):
Cordy, M, Classen, A, Heymans, P, Legay, A & Schobbens, P 2013, Model checking adaptive software with
featured transition systems. in J Cámara, R de Lemos, C Ghezzi & A Lopes (eds), Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics):
Principles, Models, and Techniques. vol. 7740, Lecture Notes in Computer Science, Springer, Heidelberg
Dordrecht London New York, pp. 1-29. https://doi.org/10.1007/978-3-642-36249-1

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. Mar. 2024

https://doi.org/10.1007/978-3-642-36249-1
https://researchportal.unamur.be/en/publications/48a33870-9de9-4d58-a753-220e821c3c31
https://doi.org/10.1007/978-3-642-36249-1

Model Checking Adaptive Software with
Featured Transition Systems

Maxime Cordy?1, Andreas Classen1, Patrick Heymans2,
Axel Legay3, and Pierre-Yves Schobbens1

1 PreCISE Research Center, University of Namur, Belgium.
{mcr,acs,pys}@info.fundp.ac.be

2 PreCISE Research Center, University of Namur, Belgium.
INRIA Lille-Nord Europe – Universit Lille 1, France.

LIFL – CNRS, France.
phe@info.fundp.ac.be

3 INRIA Rennes, France.
Aalborg University, Denmark.
University of Liège, Belgium.

axel.legay@inria.fr

Abstract. We propose to see adaptive systems as systems with highly
dynamic features. We model as features both the reconfigurations of the
system, but also the changes of the environment, such as failure modes.
The resilience of the system can then be defined as the fact that the
system can select an adequate reconfiguration for each possible change
of the environment. We must take into account that reconfiguration is
often a major undertaking for the system: it has a high cost and it
might make functions of the system unavailable for some time. These
constraints are domain-specific. In this paper, we therefore provide a
modelling language to describe these aspects, and a property language
to describe the requirements on the adaptive system. We design algo-
rithms that determine how the system must reconfigure itself to satisfy
its intended requirements.

1 Introduction

Our society increasingly entrusts computerized systems with complex and criti-
cal tasks. These systems have to be adapted, or adapt themselves, to a rapidly
evolving environment, while accomplishing their tasks reliably. Due to the short
reaction times required, some of these adaptations have to be performed auto-
matically, leading to self-adaptive systems. Such systems are usually architected
in two levels: The base level manages the basic tasks of the system. It has a
simple design that allows rapid response times, but does not allow to respond

? FNRS Research Fellow

to exceptional conditions. For instance, a satellite control system is in charge of
maintaining the attitude of the satellite so that the solar panels face the sun. It
must react rapidly when the satellite starts to spin. On the other hand, the adap-
tive level can detect a change of conditions, and reprogram the base system to
adapt to these new conditions. Again, the base system is efficient, but often not
exhaustive. For instance, when entering the shadow of a planet, the system will
be adapted to give priority to the orientation of the data transmission antenna.

In this paper, we propose to model such adaptation by the notion of feature,
borrowed from product lines engineering. Classically, a feature is an added func-
tionality to the system, that responds to a (new) need of the customer. Here, a
feature can also be an adaption to environmental conditions. For uniformity, we
also model such evolutions of the environment (in which we might include some
parts of the system itself) as special “features”. They can be failures (in which
case the associated behaviour describes the failure mode and effects), increase
of power of an attacker (in which case the associated behaviour describes the
modus operandi of attacks), etc.

In some cases, preserving the functionality of the system is not possible, e.g.
in the presence of severe failures. Therefore the requirements need to allow for
degraded functionality in such cases, and thus our requirements logic (Section 4)
also should include dependency on features. For instance, when a solar panel is
damaged, the satellite is allowed to shut down some of its non-prioritary facilities
(e.g., observation of aurora borealis) to preserve its vital functions (e.g., avoiding
falling on Earth) instead. We thus define resilience as the capacity to ensure
such conditional requirements in presence of a changing environment (at end of
Section 4).

More concretely, our contributions are the following: we propose in Section
3 a fundamental framework, called A-FTS, to model the evolution of both the
environment and the adaptive system, and in Section 4 AdaCTL, a temporal
logic to describe the requirements on such a system. The next step is, naturally,
to check whether the model satisfies the requirements in face of a changing
environment, i.e., its resilience. This resilience-checking problem departs from
the classical model-checking problem in several ways, and thus requires specific
adaptations of the classical algorithms, presented in Section 5.

Finally, we compare our approach to extant work in Section 6. This paper
only addresses modelling and checking the behaviour of an adaptive system.
We briefly sketch the other tools needed for a more comprehensive approach to
(self-)adaptive systems in Section 7.

2 Background

In order to make this paper self-contained, we first recapitulate essential defini-
tions related to SPL modelling and verification.

Model checking is a well-known technique for verifying software-intensive sys-
tems against temporal properties. In a nutshell, given the model of a system M
and a temporal property Φ, a model-checking algorithm determines whether or

not M satisfies Φ, written M |= Φ. One may use labelled transition system (LTS)
as such a model.

Definition 1 An LTS is a tuple (S,Act, trans, I, AP,L) where S is a set of
states, Act is a set of actions, trans ⊆ S × S is a transition relation, I ⊂ S is
a set of initial states, AP is a set of atomic propositions, and L : S → 2AP is a
labelling function that associates every states with the set of atomic propositions
satisfied by this state.

We call an execution (or run) of the system an alternating sequence of states
and actions. The semantics of an LTS, noted [[.]]LTS , is then its set of executions,
that is,

[[ts]]LTS = {s0, α0, s1, α1, . . . , si, αi, . . . | s0 ∈ I ∧ (si, αi, si+1) ∈ trans}. (2.1)

In the context of SPLs, the model-checking problem becomes more complex
as it requires to identify the exact set of products that do not satisfy a given
property [17]. To answer it, one can model each product with an LTS and model-
check each of them separately. However, for a SPL of n features, this would
require O(2n) calls to a model checker. Given that distinct products of an SPL
may have commonalities in their behaviour, there is a need for concise models
and efficient algorithms able to distinguish between commonality and variability.

In this paper, we assume that the variability is captured in a feature model,
features being atomic units of difference between products. A product is then
uniquely defined by a set of features.

Definition 2 Let F be a set of features. Then a product p is a subset of F , that
is, p ∈ P(F) where P denotes the powerset.

Several representations exist for feature models. Here, we remain at an abstract
level and consider feature models independently of their representation. More
precisely, we stick to the semantics of Schobbens et al. [47] and assume that a
feature model defines a set of valid products, i.e., a set of authorized combina-
tions of features.

Definition 3 A feature model is a couple

d = (F, [[d]] ⊆ P(P(F))) (2.2)

where F is a set of features, and [[d]] is the set of valid combinations of features.

Given the similarities between different products, SPL modelling approaches aim
to capture both their commonality and their variability in a compact manner [8,
22, 7, 17]. Most of them rely on the use of variability operators that determine
which parts of the model may or may not be present in a given product; the
non-variable parts being shared by all the products. For instance, we proposed
Featured Transition Systems (FTS) as an extension of Labelled Transition Sys-
tems (LTS) meant to model the behaviour of SPLs [17]. FTS model design-time

variability of the system behaviour by labelling transitions (i.e., executions of ac-
tions) between two states of the system with Boolean constraints defined over the
set of features. Then a given product is able to trigger a given transition if and
only if its set of features satisfies the associated constraints. Such a constraint is
called feature expression and is formally defined as follows.

Definition 4 A feature expression exp defined over a set of features F is a total
function

exp : P(F)→ {>,⊥}. (2.3)

For a given product p, exp(p) returns > if and only if the features of p satisfies
the constraints expressed by exp. In this case, we say that p satisfies exp. We
denote by [[exp]] ⊆ P(F) the set of products that satisfy exp and by > the feature
expression such that [[>]] = P(F). In FTS, we use feature expressions to restrict
the set of products able to execute a given transition [16].

Definition 5 An FTS is a tuple (S,Act, trans, I, AP,L, d, γ), where

– S,Act, trans, I, AP,L are defined as in Definition 1,
– d is a feature diagram,
– γ : trans → P(F) → {>,⊥} is a total function, labelling each transition

with a feature expression.

Thanks to the use of feature expressions, an FTS is a compact representation
for a set of LTS, namely one per product. One can obtain the LTS modelling
the behaviour of a given product by computing the projection of the FTS onto
that product [17].

Definition 6 The projection of an FTS fts to a product p ∈ [[d]], noted fts |p,
is the LTS (S, Act, trans′, I, AP, L) where trans′ = {t ∈ trans | p ∈ [[γ(t)]]}.
The semantics of an FTS M = (S,Act, trans, I, AP,L, d, γ), noted [[fts]]FTS ,
is then defined as a function that associates a product with the semantics of its
projection:

[[M]]FTS : P(F)→ (S ×Act)ω : ∀p ∈ [[d]] • [[M]]FTS(p) = [[M |c]]LTS (2.4)

Model checking an FTS against a property Φ comes down to distinguishing
between the products that satisfy Φ and the ones that do not. This leads us to a
new notion of satisfiability |=F , which is not Boolean. Formally, ifM is an FTS
defined over a feature model d and Φ is a property, we have

(M |=F Φ) = {p ∈ [[d]] •M |p |= Φ} (2.5)

Given the importance of features in SPLs, a suitable logic should include spe-
cial operators that reason over them. For this purpose, we defined a featured
extension of the Computational Tree Logic (CTL) [15]. It is called fCTL. Any
formula defined in this logic has the form [χ]Φ where χ is a feature expression
and Φ is a CTL formula. Given an FTS M defined over a feature model d and
a product p ∈ [[d]], p satisfies [χ]Φ if and only if p does not satisfy χ or M |p
satisfies Φ.

3 Modelling the Behaviour of Dynamic SPLs

One way to model a dynamically adaptive software is to represent it as a set
of static programs and transitions between them [51]. A transition between two
programs models an adaptation of the system, which may be needed in case of
changes in the properties of the environment. Since those programs are usually
meant to satisfy the same set of high-level goals, they likely share commonalities
in their structure and behaviour. Moreover, nowadays an increasing number of
software systems are designed as product lines and we observe the emergence of
Dynamic Software Product Lines (DSPLs) [33], especially in the mobile software
industry. In order to cope with changing architectures and environments, these
SPLs are equipped with the ability to change their set of features at runtime. In
this context, we call configuration the set of features of a system at a particular
point of time, and reconfiguration the process of altering the configuration of
this system. The details of such reconfigurations are often hidden to the user
who can only witness which features of the system have changed.

However, behavioural modelling approaches for SPLs like FTS do not con-
sider that an SPL may have to adapt its behaviour due to unexpected changes
in the environment. In other words, a given configuration is chosen and fixed
through the whole execution of the system, which is thus completely dependent
to the environment. Here, we propose a new modelling formalism that allows
dynamic reconfiguration. More precisely, we introduce Adaptive Featured Tran-
sition Systems (A-FTS), an extension of FTS meant for modelling DSPLs. A-
FTS explicitly represent the variability of both the system and its environment.
The latter is defined as a set of features, such that an environment feature is a
Boolean characteristic of the environment that may change over time and that
the software has the ability to perceive. The capability of the software to execute
a transition thus depends on both its features and those of the environment. For
the system, we distinguish between fixed, non-mutable features and adaptable
features. To capture the variability of both the system and the environment, we
now define a feature model as a tuple

d = (F, Fs ⊆ F, Fa ⊆ Fs, [[d]] ⊆ P(P(F))) (3.1)

where F is the set of all the features, Fs is the set of the system’s features, Fa is
the set of the system’s adaptable features, and [[d]] the set of valid configurations.
We also assume that the system and the environment do not share any feature,
so that we can define the set of the environment features (noted Fe) as F \ Fs.
According to the above, we define a system configuration (resp. an environment
configuration) as a subset of Fs (resp. Fe), and a (complete) configuration is the
union of these two.

An adaptable feature may be enabled or disabled at some points during the
execution. Unexpected variations in the environment may force the software
to adapt its configuration so that it still works properly according to intended
requirements. Given that objective, we consider that after the system executes a
transition, it is able to observe the features of the environment that are enabled

at that time. According to the current configuration of the environment, the
system may alter its own configuration so that it avoids failure or undesirable
situations. Since we do not yet consider real-time constraints, we suppose that
these reconfigurations are atomic and instantaneous. However, the system can be
forbidden to reconfigure itself at some point because it must first terminate the
execution of a given sequence of actions. In particular contexts, the environment
can also be stable during a given period. The following formal definition of A-
FTS takes all these considerations into account.

Definition 7 An A-FTS is a tuple (S,Act, trans, i, AP,L, d, γ) where

– S, Act, I ⊆ S, AP , and L : S → P(AP) are defined as in Definition 1;
– d = (F, Fs, Fa, [[d]]) is the feature model modelling the variability of both the

system and the environment;
– γ : S × Act × S → (P(F) × P(F) → {>,⊥}) is a function that defines the

transition relation.

Note that unlike LTS and FTS, the transition relation is not defined as a set
called trans. Instead, we use the function γ to encode symbolically which tran-
sitions exist, which products can execute them and how the configuration of the
system and the environment evolve. More precisely, this function allows us to:

1. Determine whether of not the system can reach a state s′ by executing an
action α from a state s. If that is not the case then γ(s, α, s′) is a function that
returns a ⊥ whatever the configuration of the system and the environment.

2. Restrict the set of configurations able to execute such a transition. Let us
suppose that the the system can reach s′ from s by executing α if and only
if its features satisfy the feature expression exp. For any system’s configura-
tions c ∈ [[exp]], c′ ∈ P(Fs) and environment’s configurations e, e′ ∈ P(Fe),
we have γ(s, α, s′)(c∪ e, c′ ∪ e′). This definition of transition relation is thus
more general than in FTS.

3. Restrain how the configuration of the system and the environment can evolve
after the execution of the transition. For instance, let us suppose that if the
system moves from s to s′ by executing α while in configuration c then it
cannot change its configuration at all. To express that constraint we define
that for any system’s configuration c and environment’s configurations e and
e′, we have for any c′ that γ(s, α, s′)(c ∪ e, c′ ∪ e′) =⊥.

Note that γ must be defined such that only the adaptable features of the system
may be enabled or disabled during runtime:

(c \ c′) ∪ (c′ \ c) 6⊆ Fa =⇒ ¬γ(s, α, s′)(c ∪ e, c′ ∪ e′) (3.2)

for any s, α, s, c, c′, e, e′. Moreover, any reconfiguration of the system and the
environment must ensure that the new configuration is valid (that is, it must
satisfy the constraints of the feature model). Accordingly, the function γ must
be such that:

c′ ∪ e′ 6∈ [[d]] =⇒ ¬γ(s, α, s′)(c ∪ e, c′ ∪ e′) (3.3)

for any s, α, s, c, c′, e, e′.

Example 8 An example of an A-FTS is graphically illustrated in Figure 1. It
depicts a small behavioural model of an adaptive routing protocol inspired by
the case study of Zhang et al. [51]. The system has one adaptable feature en-
cryption, which leads to two possible configurations. Similarly, the environment
has one feature safe that may or may not be enabled. Initially, the system is in
state ready. Once it receives a message, it enters the state received. Then, it
routes the message and enters either routed-safe or routed-unsafe depend-
ing on whether the environment is safe or not. This information is captured by
the environment’s feature safe. In our graphical representation, we model these
restrictions by writing the feature expression that must be satisfied by the cur-
rent configuration of the system and the environment for the transition to be
executable. Formally, we make use of the transition relation γ for defining those
restrictions. For instance, we know that the transition between received and
routed-unsafe cannot be executed in a safe environment; accordingly, we de-
fine γ such that

¬γ(received, route(), routed-unsafe)(c ∪ e, c′ ∪ e′) (3.4)

where safe ∈ e and for any e′,c,c′. In order to increase readability, we do not
explicitly represent the whole definition of the function γ.

If the environment is safe then the system simply sends the message, reaches
the state sent-safe and ends up going back to the state ready. If the environ-
ment is not safe and if the system’s feature encryption is enabled, then the system
encrypts the message and sends it afterwards. Otherwise, it sends the message
unencrypted. In every case, the system eventually returns to state ready. In our
graphical representation, the set of atomic propositions satisfied by a given state
is written directly below it.

Additionally, we define that once the system has routed the message it cannot
change its configuration until it reaches state ready again. Similarly, we suppose
that the feature of the environment are stable between the routing and the sending.
We capture those restrictions by means of the transition relation γ. For instance,
we have

γ(routed-safe, send(), sent)(c ∪ e, c′ ∪ e′)⇔ (c = c′ ∧ e = e′). (3.5)

for any c, c′, e, e′. A property of interest for this system is that while the environ-
ment is unsafe, no package is sent before it is encrypted. Further in the paper,
we introduce a new logic able to express such properties.

As mentioned in Section 2, an (infinite) execution of a transition system is
defined as an alternating sequence of “states” and actions. Unlike LTS and FTS,
the concept of state in A-FTS does not only refer to the state of the system
itself, but also to its configuration as well as that of the environment. In order
to avoid ambiguity, we call that a macrostate.

Definition 9 Let M be an A-FTS. Then a macrostate of M is a triplet

(s, c, e) ⊆ S × P(Fs)× P(Fe).

ready received

routed-
safe

sent-
encrypt

sent

routed-
unsafe

{sent}

{sent, encrypt}

∅∅

∅

receive() /

rou
te(

) /
sa

fe

route() / ¬safe

send() /

send() /
¬encrypt

send() / encrypt

ready() /

ready() /

∅

Fig. 1. The A-FTS modelling the adaptive routing protocol.

For example, one of the macrostates of the A-FTS presented in Example 8 is
(ready, ∅, {safe}). If the A-FTS is in this macrostate, it means that the system
is in state ready, has not the feature encryption enabled and executes in a safe
environment. Then once the action receive() is executed, the A-FTS can reach
one of the following four macrostates: (receive(), ∅, ∅), (receive(), ∅, safe),
(receive(), encryption, ∅), and (receive(), encryption, safe). The actual ma-
crostate depends on how the environment evolves and how the system decides
to reconfigure itself.

Definition 10 A run in an A-FTS M is a sequence of the form

(s0, c0, e0)α0(s1, c1, e1)α1 . . . (si, ci, ei)αi . . .

where (s0, c0, e0) ∈ I ×P(Fs)×P(Fe) is called the initial macrostate and where
for every i ∈ N we have γ(si, αi, si+1)(ci ∪ ei, ci+1 ∪ ei+1).

Note that this definition allows the system to start in any valid configuration.
For instance, a run in the A-FTS described in Example 8 is

(ready, ∅, {safe}) receive() (ready, {encrypt}, ∅) route()

(routed-unsafe, {encrypt}, ∅) send() (sent-encrypt) ready()

(ready, ∅, {safe}) . . . (3.6)

As for FTS, we define the projection of an A-FTS onto a configuration c as
the A-FTS obtained by setting its initial configuration to c. The resulting A-FTS
is noted M |c and is such that

[[M |c]] = {(s0, c0, e0)α0(s1, c1, e1)α1 . . . (si, ci, ei)αi · · · ∈ [[M]] |
s0 ∈ I ∧ c0 = c ∧ ∀i ∈ N • (si, ci, ei) ⊆ S × P(Fs)× P(Fe)}. (3.7)

Then the semantics of an A-FTS is a function that associates a system config-
uration c with the set of executions where the system starts in configuration
c.

Definition 11 Let M be an A-FTS. The semantics of M is the function

[[M]] : P(Fs)→ (S × P(Fs)× P(Fe)×Act)ω • [[M]](c) = [[M |c]] (3.8)

According to the above semantics, there is a close relation between A-FTS,
FTS and LTS. An FTS is an A-FTS where the environment has an established,
unchanging configuration and where the system starts in any valid configuration
and never modifies it, that is

∀(s0, c0, e0)α0(s1, c1, e1)α1 . . . (si, ci, ei)αi · · · ∈ [[M]] •

∀i ∈ N • ci = ci+1 ∧ ei = ei+1. (3.9)

A sufficient condition for that condition to hold is that γ(s, α, s′)(f, f ′) returns
⊥ whenever f 6= f ′. In this case, two runs differ only by (1) the actions chosen
by the environment and (2) the states reached by the system. Furthermore, the
projection of this FTS onto a configuration c (i.e. an LTS) is equivalent to the
projection of this special A-FTS to c.

4 The AdaCTL Logic

To express properties that a DSPL must satisfy, we use a variant of the fCTL
logic. The resulting logic, called Adaptive Configuration Time Logic (AdaCTL),
extends the syntax of fCTL to allow further reasoning over the features. Also,
its semantics is different because it takes into account that the system and the
environment are not always allowed to change their own configuration. In this
section, we introduce the syntax and the semantics of AdaCTL and provide an
example of properties that can be expressed in this logic.

4.1 Syntax

We can classify the AdaCTL formulae into three categories. The first type of
formula is called feature formula. It has the form

Ψ ::= [χ]Φ (4.1)

where χ is a feature expression and Φ is a state formula. To increase readability,
when the feature expression χ is equivalent to >, we omit it; that is, for any
state formula Φ, we define that

Φ , [>]Φ. (4.2)

A state formula is defined over a set AP of atomic propositions and is built
according to the following grammar:

Φ ::= > | a | Ψ1 ∧ Ψ2 | ¬Ψ | Aϕ | Eϕ (4.3)

where a ∈ AP , Ψ , Ψ1 and Ψ2 are feature formulae, and ϕ is a path formula. This
latter category of AdaCTL formula is defined as follows:

ϕ ::=©Ψ | Ψ1U Ψ2 | Ψ1R Ψ2 (4.4)

where Ψ , Ψ1, and Ψ2 are feature formulae, © is the next operator, U is the until
operator, and R is the release operator.

Before providing AdaCTL with a formal semantics, we first explain it intu-
itively for each type of formula. A feature formula [χ]Φ means that if the system
is in a given macrostate (s, c, e) such that the configuration of the system and
the environment satisfy the feature expression χ (that is, c ∪ e ∈ [[χ]]), then s
must satisfy the state formula Φ. It is thus very similar to an fCTL formula. The
difference is that in fCTL, a feature expression occurs before the top-level state
formula only, whereas AdaCTL allows it to occur before any state formula. This
provides more flexible ways to reason on the features. In particular, if we want to
express that a feature f must be enabled, we may use the formula [¬f] ⊥, which
is satisfied if and only if the system is in a configuration where f is enabled.
Moreover, while authorizing feature expressions to occur at any level of a for-
mula would not change the expressiveness of fCTL, it increases that of AdaCTL.
For example, since the environment is modelled as a set of features varying over
time, AdaCTL formulae can model changes of objectives with respect to what
happened in the past.

A state formula is a formula defined over a state. Any macrostate satisfies
the formula >. A macrostate (s,c,e) satisfies a if and only if a belongs to the
set of atomic propositions in L(s); it satisfies the conjunction of two formulae
if and only if it satisfies both. Also, the negation of a formula is satisfied if and
only if the formula itself is not satisfied. The AdaCTL operator E is similar to
the existential operator of CTL: a macrostate m satisfies the formula Eϕ if and
only if there exists a path starting from m that satisfies ϕ.

The most subtle difference between AdaCTL and the other two logics lies in
the semantics of formulae of the form Aϕ. A macrostate m satisfies Aϕ if and
only if starting from m, the system can ensure by means of reconfigurations that
any forthcoming execution will satisfy ϕ regardless of the environment.

As in CTL, a path π satisfies the AdaCTL path formula©Ψ if and only if the
first macrostate of π (that is, the macrostate following the initial one) satisfies
the feature formula Ψ . A path π satisfies Ψ1UΨ2 if and only if it eventually

reaches a macrostate mj that satisfies Ψ2 and every macrostate before mj on π
satisfies Ψ1. Finally, π satisfies Ψ1RΨ2 if and only if every macrostate reached by
π satisfies Ψ2 unless a previously reached macrostate satisfied Ψ1.

From the until and the release operator, one can derive two additional, in-
tensively used operators: eventually (♦) and forever (�). Intuitively, a path π
satisfies ♦Ψ if and only if there exists a macrostate along π that satisfies Ψ ; π
satisfies �Ψ if and only if every macrostate along this path satisfies Ψ . Formally,
these two operators are obtained as follows:

[χ]E♦Ψ = [χ]E(> U Ψ) (4.5)

[χ]A♦Ψ = [χ]A(> U Ψ) (4.6)

[χ]E�Ψ = [χ]E(> R Ψ) (4.7)

[χ]A�Ψ = [χ]A(> R Ψ) (4.8)

Example 12 We now provide an example of AdaCTL formula. Let us consider
the A-FTS presented in Example 8 and the property according which the sys-
tem must ensure that in an unsafe environment, no packet is sent before it is
encrypted. We can express this property as the AdaCTL formula

A�([¬safe]A(¬sent U[¬safe]encrypted)) (4.9)

The � operator is needed because the environment can become unsafe at any mo-
ment. According to this formula, from every macrostate where the environment
feature safe is disabled, the system must eventually reach a macrostate where
either the atomic proposition encrypted is satisfied or the environment is safe
again; any macrostate reached in the mean time must be such that the atomic
proposition sent is not satisfied.

Example 13 Assume we model the requirements for a satellite to normally al-
ways maintain altitude (a) and make observations (o), but in case the solar
panels are damaged (failure d), the second requirement can be dropped:

A�(a ∧ [¬d]o) (4.10)

In classical CTL, the R operator is derived from the operator of U and the
negation. Consequently, � is also derived from ♦ and the negation. However, as
we will show further in this section, this definition is not suitable in AdaCTL
because A and E are not dual. Hence the need for considering R as a primitive
operator that cannot be derived from the others.

4.2 Semantics

Before providing AdaCTL with a formal semantics, we first formalise the notions
of strategy for both the system and the environment. Intuitively, a strategy for
the system determines how the systems reacts (that is, how it reconfigures itself)
according to what happened in the past. We call that a reconfiguration strategy.

Definition 14 Let M = (S,Act, trans, i, AP,L, d, γ) be an A-FTS. A reconfig-
uration strategy is a function

StrC : (S × P(Fs)× P(Fe))
+ × S × P(Fe)→ P(Fs) (4.11)

where X∗ is the type of the sequences of Xs.

Intuitively, the system modifies its configuration according to the sequence of all
the macrostates that have been previously visited, the next state that is reached
and the next configuration of the environment.

Similarly, we can encode non-deterministic choices and uncontrolled config-
uration as a strategy for the environment.

Definition 15 Let M = (S,Act, trans, i, AP,L, d, γ) be an A-FTS. An envi-
ronment strategy is a function

StrE : (S × P(Fs)× P(Fe))
+ → Act× P(Fe) (4.12)

An environment strategy thus associates the sequence of macrostates that have
already been visited with an action and a new configuration for the environment.
These definitions of strategy are closely related to those found in the Alternating
Time Logic (ATL) theory [2]. If the notion of feature were absent, AdaCTL
model checking could be regarded as a particular case of ATL model checking.
We discuss the link between these two logics more thoroughly in Section 6.

Given an initial macrostate init = (s0, c0, e0), an environment strategy StrE ,
and a reconfiguration strategy StrC , applying StrE and StrC from init results
in a unique execution

Path(init, StrC , StrE) = (s0, c0, e0)α0(s1, c1, e1)α1 . . .

such that ∀i ∈ N we have

(αi, ei+1) = StrE(s0, c0, e0, . . . , si, ci, ei) (4.13)

ci+1 = StrC(s0, c0, e0, . . . , si, ci, ei, si+1, ei+1). (4.14)

This run is valid according to M if and only if it is part of the semantics
of M, that is, Path(Init, StrC , StrE) ∈ [[M]]. More generally, we denote by
Path(m,StrC , StrE) the path starting from a macrostate m induced by the
environment strategy StratE and the reconfiguration strategy StratC .

Following the definition of valid execution, we define that an environment
strategy StrE is valid according to M if and only if it cannot lead to invalid
executions.

∀init ∈ I × P(Fs)× P(Fe) • ∀StrC • Path(init, StrC , StrE) ∈ [[M]] (4.15)

We define similarly the validity of a reconfiguration strategy StrC :

∀init ∈ I × P(Fs)× P(Fe) • ∀StrE • Path(init, StrC , StrE) ∈ [[M]] (4.16)

From now on, we consider only valid strategies. Then, we define the semantics
of AdaCTL as follows.

Definition 16 Let M be an A-FTS, (s, c, e) one of its macrostates. Then the
satisfiability of an AdaCTL feature or state formula by M in macrostate (s, c, e)
is determined according to the following rules:

M, (s, c, e) |= [χ]Φ ⇔ c ∪ e 6∈ [[χ]] ∨M, (s, c, e) |= Φ

M, (s, c, e) |= > ⇔ >
M, (s, c, e) |= a ⇔ a ∈ L(s)

M, (s, c, e) |= Φ1 ∧ Φ2 ⇔M, (s, c, e) |= Φ1 ∧M, (s, c, e) |= Φ2

M, (s, c, e) |= ¬Φ ⇔ ¬(M, (s, c, e) |= Φ)

M, (s, c, e) |= Eϕ ⇔ ∃StrC • ∃StrE •M, Path((s, c, e), StrC , StrE) |= ϕ

M, (s, c, e) |= Aϕ ⇔ ∃StrC • ∀StrE •M, Path((s, c, e), StrC , StrE) |= ϕ

The semantics of path formulae is very similar to that of CTL path formulae:

M, π |= ©Ψ ⇔ π[1] |= Ψ

M, π |= Ψ1UΨ2 ⇔ ∃j ≥ 0 • π[j] |= Ψ2 ∧ ∀i ≤ j • π[i] |= Ψ1

M, π |= Ψ1RΨ2 ⇔ (∀j ≥ 0 • π[j] |= Ψ2) ∨ (∃i • π[i] |= Ψ1 ∧ ∀k ≤ i • π[k] |= Ψ2)

where π is a path, π[0] is the initial macrostate of π, and π[i+1] is the macrostate
following π[i] in π.

According to the above, we define that M |c satisfies an AdaCTL formula Ψ if
and only if for any initial state i of M and environment configuration e, M
satisfies the formula in macrostate (i, c, e); that is,

(M |c |= Ψ)⇔ ∀i ∈ I • ∀e ∈ P(Fe) •M(i, c, e) |= Ψ. (4.17)

This leads us to the more general satisfiability relation of an AdaCTL formula
by an A-FTS. As for FTS and fCTL, this relation, noted |=F is not boolean [19].
Instead, it is defined as the set of configurations such that when starting in such
a configuration, the A-FTS satisfies the formula.

Definition 17 Let M be an A-FTS and Ψ an AdaCTL formula. Then,

(M |=F Ψ) = {c ∈ P(Fs) | M |c |= Ψ} (4.18)

Definition 18 A formula Ψ is called an absolute requirement if it contains
no feature (i.e. no occurrence of the [χ] operator). It is called conditional if
it contains non-adaptable system features. It is called adaptive if it contains
the A operator. A system is called adaptive if it has adaptive requirements and
adaptable features.

Definition 19 An adaptive system M with requirements Φ is called resilient
if there is an initial configuration such that all its requirements are satisfied:
M |=F Φ 6= ∅.

This implies that, for each adaptive requirement, the system must be equipped
with adaptation strategies that allow him to react to any environment (re)confi-
guration, in particular to any failure.

For instance, ifM is the A-FTS presented in Example 8 and Ψ is the adaptive
requirement given in Example 12, we have

(M |=F Ψ) = P(Fs) (4.19)

since for any initial configuration, there exists a reconfiguration strategy that
ensures the satisfaction of Ψ . One such strategy would be to enable the feature
encrypt as soon as the system reaches the state received. However, if setting
up this feature requires some time (for downloading the encryption code, etc.),
the system has to wait that the feature is enabled before sending the message.

Note that according to the above semantics, A and E are not dual. We prove
this for the © operator.

Theorem 20 Let Ψ be an AdaCTL feature formula. We have

A© Ψ 6= ¬(E © ¬Ψ) (4.20)

Proof. Let us assume that A and E are dual for the © operator. Let us consider
the two AdaCTL formulae A©A© a and E © E © ¬a where a is an atomic
proposition. Then, for any A-FTSM and system configuration c, ifM |c satisfies
the former then it does not satisfy the latter and vice-versa. Let M be the A-
FTS shown in Figure 2 where f is a feature of the system. It turns out that
M |c |= A©A© a for any configuration c. Indeed, once in state 2 the system
can change its configuration such that f is not enabled. In this case, only state 3
is reachable and the formula is thus satisfied regardless of the action chosen by
the environment and its configuration. On the other hand, M |c |= E © E © ¬a
for any c as well. Once in state 2, if the system change its configuration such
that f is enabled, the system can reach state 4. Since M satisfies both formulae
and given that it is impossible for an A-FTS to satisfy both a formula and its
negation, the duality law does not hold. �

The above counterexample also denies the duality law for the ♦, the �, the
Uand the Roperators. Since the proof is very similar, we omit it.

Theorem 21 Let Ψ be an AdaCTL feature formula. We have

A(Ψ1UΨ2) 6= ¬(E(¬Ψ1R¬Ψ2)) (4.21)

E(Ψ1UΨ2) 6= ¬(A(¬Ψ1R¬Ψ2)) (4.22)

A♦Ψ 6= ¬(E�¬Ψ) (4.23)

E♦Ψ 6= ¬(A�¬Ψ). (4.24)

This implies that A cannot be expressed in terms of E . Thus, when model check-
ing an A-FTS against an AdaCTL formula, we have to consider the operator A
and E separately. On the contrary, the usual expansion laws still hold. Basically,

1 2

3

4

{a}

∅∅

∅

act() /

ac
t()

act() / f

act() /

act() /

Fig. 2. Counterexample for the duality laws.

an expansion law allows to express an operator in terms of formulae that the
current state must satisfy to satisfy the formula defined by the operator. For
instance, the expansion law for A(Ψ1UΨ2) expresses that this formula is satis-
fied if and only if Ψ2 immediately holds or if Ψ1 holds and the formula holds
in the next state. As for CTL, the AdaCTL model checking algorithms make
intensively use of these laws, as we will see in the next section.

Theorem 22 Let Ψ, Ψ1, Ψ2 be AdaCTL formulae. Then we have the following
expansion laws:

A(Ψ1UΨ2) ≡ Ψ2 ∨ (Ψ1 ∧ A©A(Ψ1UΨ2)) (4.25)

A(Ψ1RΨ2) ≡ Ψ2 ∧ (Ψ1 ∨ A©A(Ψ1RΨ2)) (4.26)

A(♦Ψ) ≡ Ψ ∧ A©A♦Ψ (4.27)

A(�Ψ) ≡ Ψ ∧ A©A�Ψ (4.28)

E(Ψ1UΨ2) ≡ Ψ2 ∨ (Ψ1 ∧ E © E(Ψ1UΨ2)) (4.29)

E(Ψ1RΨ2) ≡ Ψ2 ∧ (Ψ1 ∨ E © E(Ψ1RΨ2)) (4.30)

E(♦Ψ) ≡ Ψ ∧ E © E♦Ψ (4.31)

E(�Ψ) ≡ Ψ ∧ E © E�Ψ (4.32)

Proof. We prove only the expansion law of A(Ψ1UΨ2). The other proofs involving
the A operator either can be derived from this one or follow a similar pattern.
The proofs related to E are implied from the expansion laws in CTL.

For any m = (s, c, e), StE, and StC , the initial state of Path(m,StC , StE)
is m and thus depends on neither StC nor StE. Accordingly, the semantics of
A(Ψ1UΨ2) is equivalent to

(M,m |= Ψ2) ∨ ((M,m |= Ψ1) ∧ ∃StrC • ∀StrE •
Path(Path(m,StrC , StrE)[1], StrC , StrE) |= Ψ1UΨ2 (4.33)

On the other hand,

M,m |= (Ψ2 ∨ (Ψ1 ∧ A©A(Ψ1UΨ2))) (4.34)

is equivalent to

(M,m |= Ψ2) ∨ ((M,m |= Ψ1) ∧ ∃Str′C • ∀Str′E •
Path(m,Str′C , Str

′
E) |=©A(Ψ1UΨ2) (4.35)

which can be re-written as

(M,m |= Ψ2) ∨ ((M,m |= Ψ1) ∧ ∃Str′C • ∀Str′E • ∃Str′′C • ∀Str′′E •
Path(Path(m,Str′C , Str

′
E)[1], Str′′C , Str

′′
E) |= Ψ1UΨ2 (4.36)

We immediately have that Equation (4.33) implies Equation (4.36); in this case,
we have StrC = Str′C = Str′′C . Next, we define the strategy Str′′′C such that Str′′′C
behaves like Str′C for the first transition, and like Str′′′C for the subsequent ones.
Then for any Str′′′E we have that

Path(Path(m,Str′′′C , Str
′′′
E)[1], Str′′′C , Str

′′′
E) |= Ψ1UΨ2. (4.37)

Equations (4.33) and (4.36) are thus equivalent and we have proven the expan-
sion law. �

The expansion laws for A(ϕ) imply that if StrC is the reconfiguration strategy
such that ∀StrE • Path(m,StrC , StrE) |= ϕ then every macrostate m’ reached
on this path is such that M,m′ |= A(ϕ).

5 Algorithms

As previously mentioned, model checking an A-FTS against an AdaCTL formula
comes down to identifying the initial configurations such that for any initial state
and initial environment configuration, the A-FTS satisfies the formula when the
system starts in such a configuration. In this section, we propose an algorithm
to compute the satisfaction relation between an A-FTS M and an AdaCTL
formula Ψ . For the sake of readability and conciseness, we present only the
algorithms in their explicit form. Following our previous work on fCTL model
checking [16], we can transform them into symbolic algorithms by using the same
encoding techniques. The basic idea is to encode states, configurations, and the
transition relation as Boolean functions. Then, symbolic algorithms work with
those functions instead of their explicit counterpart (see [16] for more details).
Note that the conversion of the transition relation in A-FTS is facilitated since
it is already defined as a Boolean function.

⁊

encryptedsent

A⇤

AU

[¬safe]

[safe]

Fig. 3. Parse-tree of the formula A(�[¬safe]A(¬sent U [¬safe]encrypted)).

5.1 AdaCTL Model Checking

We first decompose Ψ into its parse tree. Basically, the parse tree of a formula is
a tree such that each node represents a subformula of Ψ , the root is Ψ itself, and
the leaves are atomic propositions. For example, the parse tree of the AdaCTL
formula given in Example 12 is shown in Figure 3. Then, starting from the leaves
and for every subformula Ψ ′, we compute the set of macrostates

Sat(Ψ ′) = {(s, c, e) ∈ S × P(Fs)× P(Fe) | M, (s, c, e) |= Ψ ′} (5.1)

for every subformula Ψ ′ of Ψ . Once we have determined the set of macrostates
satisfying the whole formula Ψ , we infer the set (M |=F Ψ). This method al-
lows us to decompose the verification of a formula into smaller and independent
problems. It is thus similar to the fCTL and the standard CTL model check-
ing algorithms [16, 15]. However, it has to cope with (1) macrostates instead of
states, (2) dynamic features, and (3) the A quantifier, which does not exist in
the other two logics.

The computation of the set of macrostates satisfying feature and state for-
mulae directly follows from their semantics.

Sat([χ]Φ) = {(s, c, e) ∈ S × P(Fs)× P(Fe) | c ∪ e 6∈ [[χ]]} ∪ Sat(Φ) (5.2)

Sat(>) = S × P(Fs)× P(Fe) (5.3)

Sat(a) = {(s, c, e) ∈ S × P(Fs)× P(Fe) | a ∈ L(s)} (5.4)

Sat(Ψ1 ∧ Ψ2) = Sat(Ψ1) ∩ Sat(Ψ2) (5.5)

Sat(¬Ψ) = S × P(Fs)× P(Fe) \ Sat(Ψ) (5.6)

The first step towards computing a set of the form Sat(Eϕ) or Sat(Aϕ) is the
definition and the computation of predecessors set. The notion of predecessors
is, however, different depending on whether we consider the E quantifier or the
A quantifier.

In the former case, a macrostate m is an E-predecessor of m′ if and only if
from m, the macrostate m′ can be reached in one transition. More generally, let

S be a set of macrostates. Then the E-predecessors set of S, noted PreE(S), is
defined as the set of macrostates from which a macrostate in S can be reached
in one transition. Formally,

PreE(S) = {(s, c, e) | ∃α ∈ Act, (s′, c′, e′) ∈ S •
γ(s, α, s′)(c ∪ e, c′ ∪ e′)}}. (5.7)

In the latter case, we define that m is an A-predecessor of m′ if the system
can come up with a valid strategy such that when in m, it is ensured that m′ will
be reached after the execution of the next transition. Similarly to the previous
case, we define the A-predecessor set of a set of macrostates S. Intuitively, it is
the set of macrostates such that the system can ensure that after the execution
of the next transition, it will reach a macrostate of S. Given that the system
chooses its next configuration after the next state and the new environment
configuration have been determined, it is defined as

PreA(S) = {(s, c, e) | ∀α ∈ Act, s′ ∈ S, e′ ∈ P(Fe) •

(∃c′′ ∈ P(Fs) • γ(s, α, s′)(c ∪ e, c′′ ∪ e′)⇒
(∃c′ ∈ P(Fs) • γ(s, α, s′)(c ∪ e, c′ ∪ e′) ∧ (s′, c′, e′) ∈ S)). (5.8)

Let

D(s, c, e, α, s′, e′) = {(s′, c′, e′) ∈ S × P(Fs)× P(Fe)

| γ(s, α, s′)(c ∪ e, c′ ∪ e′)} (5.9)

then PreA(S) is equivalent to⋂
α,s′,e′

{(s, c, e) | (D(s, c, e, α, s′, e′) = ∅) ∨ (D(s, c, e, α, s′, e′) ∩ S 6= ∅)} (5.10)

Since the semantics of E is similar to that of the existential quantifier in
CTL, the set of macrostates satisfying a formula of the form Eϕ is computed as
in the basic CTL model checking algorithm. Sat(E ©Ψ) is the set of macrostate
such that in one transition, the system can reach a state s′, be in configuration
c′ and the environment can be in a configuration e′ such that (s′, c′, e′) satisfies
ϕ. Formally, we have

Sat(E(©Ψ)) = PreE(Sat(Ψ)) (5.11)

On the other hand, E(Ψ1UΨ2) is the smallest set S satisfying

Sat(Ψ2) ⊆ S (5.12)

Sat(Ψ1) ∩ PreE(S) ⊆ S; (5.13)

E(Ψ1RΨ2) is the largest set S satisfying

S ⊆ Sat(Ψ2) (5.14)

S ⊆ Sat(Ψ1) ∪ PreE(S) (5.15)

Both can be computed through fixed-point computation [15]. The corresponding
algorithms being identical to their CTL counterpart, we omit them here.

We focus now on the A quantifier. Basically, the satisfaction sets have a sim-
ilar definition than those for the E quantifier; the difference is that the A quanti-
fier requires the computation of the A-predecessors instead of the E-predecessors.
For the next operator, we have the following.

Theorem 23
Sat(A© Ψ) = PreA(Ψ) (5.16)

Proof. Follows from the semantics of A© Ψ and the definition of PreA(Ψ).

We obtain Sat(A(Ψ1UΨ2)) through a fixed-point computation. This result relies
on the following theorem.

Theorem 24 Sat(A(Ψ1UΨ2)) is the smallest set S satisfying

Sat(Ψ2) ⊆ S (5.17)

Sat(Ψ1) ∩ PreA(S) ⊆ S (5.18)

Proof. First, it directly follows from the expansion law of the Uoperator (see
Theorem 22) that Sat(A(Ψ1UΨ2)) satisfies Equations (5.17–5.18). It remains to
show that any set S satisfying those Equations is a superset of Sat(A(Ψ1UΨ2)).

Let m ∈ Sat(A(Ψ1UΨ2)). We distinguish between m ∈ Sat(Φ2) and m 6∈
Sat(Φ2).

(a) If m ∈ Sat(Φ2) then m ∈ S by Equation 5.17.
(b) Otherwise, by definition of Sat(A(Ψ1UΨ2)), we have

∃StrC • ∀StrE • Path(m,StrC , StrE) |= Ψ1UΨ2.

It means that StrC ensures that from m, we eventually reach a macrostate
that is in Sat(Ψ2). Let k be the largest number of transitions needed by StrC
to reach from m such a macrostate, and let mk this macrostate. Then mk ∈ S
by Equation 5.17. Before reaching mk, we must first reach a macrostate
mk−1 ∈ Sat(Ψ1) such that from mk−1, StrC ensures to reach mk in one
transition regardless of the strategy of the environment. Such a macrostate
is reached in at most k − 1 transitions, and belongs to PreA({mk}) ⊆
PreA(Sat(Ψ2)), and is thus in S by Equation (5.18). By induction on the
maximum number of transitions needed to reach a macrostate in Sat(Ψ2),
we obtain that m ∈ S.

The proof is then complete. �

In order to compute Sat(Ψ1UΨ2), we define the function

TU : P(S × P(Fs)× P(Fe))→ P(S × P(Fs)× P(Fe))

• TU(S) = S ∪ (PreA(S) ∩ Sat(Φ1)). (5.19)

Then, according to the Knaster-Tarski theorem and following Theorem 24, this
set is the fixed-point of the function TU when it is first applied to Sat(Ψ2), that
is,

Sat(A(Ψ1UΨ2)) = Si • ∀j ≥ i • Sj = Si (5.20)

where ∀j ∈ N

S0 = Sat(Ψ2) (5.21)

Sj+1 = T (Sj) (5.22)

The computation of Sat(A(Ψ1RΨ2)) follows a very similar procedure. For this
reason, we omit the proof.

Theorem 25 Sat(A(Ψ1RΨ2)) is the largest set S satisfying

S ⊆ Sat(Ψ2) (5.23)

S ⊆ Sat(Ψ1) ∪ PreA(S) (5.24)

Accordingly, this set can be computed as the fixed-point of the function

TR : P(S × P(Fs)× P(Fe))→ P(S × P(Fs)× P(Fe))

• TR(S) = S ∩ PreA(S). (5.25)

first applied to Sat(Ψ2).

Example 26 We illustrate the definitions of E-predecessors and A-predecessors,
as well as the above model checking algorithm. Let us consider the small A-
FTS shown in Figure 2, which we verify against the formulae E © E © ¬a and
A©A©a. First, the algorithm determines which macrostates satisfy the atomic
proposition a:

Sat(a) = {(3, c, e)}.
As ¬a occurs in the first formulae, it computes the corresponding satisfaction
set by complementing the above:

Sat(¬a) = {(i, c, e) | i ∈ {1, 2, 4}}.

We focus on E-predecessors first. A macrostate satisfies E © ¬a if and only if
from this macrostate, the system may reach a set in Sat(¬a) in one transition.
Hence,

Sat(E © ¬a) = {(i, c, e) | i ∈ {1, 4} ∨ (i = 2 ∧ f ∈ c)}.
Indeed, from state 1 the system can reach state 2 regardless of its configuration
and that of the environment; from state 2 it can reach state 4 if feature f is
enabled; and it can always loop on state 4. For the same reasons, the macrostates
satisfying the whole property is given by

Sat(E © E ©¬a) = {(i, c, e) | i ∈ {1, 4} ∨ (i = 2 ∧ f ∈ c)}.

A macrostate satisfies A© a if and only if from this macrostate, the system
can ensure it will reach a macrostate satisfying a. Regardless of the configuration
of the system and the environment, the former will remain in state 3 once it
reaches this state. Moreover, if the system is in state 2 and feature f is disabled,
it will necessarily reach state 3 after the next transition. From state 1, the system
cannot reach state 3 in one transition. The corresponding satisfaction set is thus:

Sat(A© a) = {(3, c, e)} ∪ {(2, c, e) | f 6∈ c}

The definition of Sat(A©A© a) is identical except that this time, the system
can satisfy the formula from state 1. The configuration of the system does not
matter here since the system may modify it once it reaches state 2. We have

Sat(A©A© a) = {(3, c, e)} ∪ {(2, c, e) | f 6∈ c} ∪ {1, c, e}.

5.2 Time Complexity

We now discuss the computational time complexity of checking an A-FTS M
against an arbitrary AdaCTL formula Ψ . Our algorithm recursively computes the
satisfactions sets of the subformulae of Ψ . Its time complexity is thus linear in the
size of Ψ . The satisfaction sets that are the most costly to compute are those for
the U and the R operators. Let us assume that we encode the satisfaction sets and
the transition relation symbolically. As in classical CTL model checking, the time
complexity of computing Sat(E(Φ1UΦ2)) and Sat(E(Φ2RΦ2)) is bounded by the
number of macrostates, i.e., |S|.2|Fs|.2|Fe|. This is because when computing the
corresponding smallest (resp. greatest) fixed-point, if the fixed-point has not been
reached then the application of the corresponding function removes (resp. adds)
at least one element. Computing the sets Sat(A(Φ1UΦ2)) and Sat(A(Ψ1RΦ2))
is more costly because each application of the functions TU and TR requires the
computation of PreA(S). The time complexity of this computation is bounded
by the number of states multiplied the number of environment configurations,
that is, |S|.2|Fe|. Since the number of needed applications of TU and TR is also
bounded by the number of macrostates, we obtain the following result.

Theorem 27 The time complexity of model checking an A-FTS against an
AdaCTL formula Ψ is bounded by O(|S|2.22.|Fe|.2|Fs|).

Although it is theoretically dominated by 22.|Fe| and is thus in EXPTIME, in
practice |S|2 is often bigger.

6 Related Work

To the best of our knowledge, this paper is the first to tackle formal verification
of self-adaptive SPLs. Consequently, we can only discuss related work in static
SPL model checking and verification of adaptive systems.

6.1 SPL Model Checking

The need for quality assurance techniques in SPLs has been recognized as an
important issue and we have observed the emergence of several techniques for
solving the SPL model-checking problem. Most of them rely on the use of an
automata-based formalism to model the behaviour of an SPL, and on the def-
inition of dedicated checking algorithms. Fischbein et al. [30] were the first to
propose modal transition systems to model product lines. In a nutshell, modal
transition systems are LTS with mandatory and optional transitions, the lat-
ter being transitions that are not executable by all the products. To make this
formalism more suitable in the context of SPLs, Fantechi and Gnesi [26] en-
riched it with variability operators and Asirelli et al. [6] equipped it with a logic
able to express constraints on variable behaviour. Similarly, Gruler et al. [36]
introduced PL-CCS, an extension of the CCS process algebra with variability
operators able to express optionality. Instead of introducing a new formalism, Li
et al. [40] proposed to model the behaviour of features with independent, single-
system models. More precisely, they model both the system without features and
the features as finite state machines. Then, the behaviour of a specific product
is obtained by clinging its features onto the system.

As explained by Apel et al. [4], one can also use single-system model-checking
to verify an SPL. In this case, however, the model-checker determines only
whether or not there exists a product violating an intended property. The ad-
vantage of this approach is that it allows one to benefit from all the existing
optimisations implemented in classical model-checkers. However, the goal of our
work is more general since we want to pinpoint exactly all the misbehaving
products or configurations.

The closest work on SPLs verification related to this paper is our previ-
ous work about FTS. In [17], we introduced a first definition of FTS, in which
transitions are labelled with features and can have priority over each other. We
also designed an algorithm for model checking an FTS against an LTL formula.
In [16], we provided a new definition of FTS based on feature expressions (i.e.
the one given in this paper); we also defined the fCTL logic and proposed sym-
bolic model-checking algorithms for FTS. In a recent work [19], we extended
the notion of simulation to the context of SPLs and we showed how FTS ab-
straction can reduce the verification time. In another work, we made use of this
new relation to identify special classes of features and reduced the overhead of
reverification when such features are introduced in an SPL [18].

The major difference between FTS and A-FTS are (1) the presence of a
(possibly hostile) environment, (2) the presence of variability in both the system
and its environment, and (3) the ability of the system and the environment to
change their features at runtime. Because of those differences, reasoning on A-
FTS requires the definition of a new logic to define the properties to be verified,
i.e., AdaCTL. In particular, fCTL is not suitable in this context because it
permits to reason on neither dynamic features nor an external environment.
AdaCTL is thus different from fCTL in both syntax and semantics, in the same

way as the classical logics ATL and CTL are different. A comparison between
AdaCTL and ATL is given further in this section.

6.2 Verification of Adaptive Systems

The verification of adaptive systems is a topic that received a lot of attention
from the scientific community. The work related to that context being particu-
larly large, we focus here on the most recent results.

In their research roadmap for adaptive systems [13], Cheng et al. stated
that in the context of adaptive systems, the objective of quality assurance is to
provide evidence that the system is able to cope with changes in its objectives
and its environment. The classical validation and verification methods being
meant for stable systems, there is a crucial need for novel techniques specific to
adaptive systems. They presented a framework for adaptive systems assurance,
in which the system, the goals, and the context are subject to modifications.
This results in a succession of models for the system and properties to verify.
In our work, such a model is the LTS resulting from fixing the configuration
of the state and the environment and removing the transitions unavailable for
these configurations; the succession of properties can be expressed by AdaCTL
feature formula.

Following the idea of representing adaptive systems as a succession of models,
several verification methods model them as a set of programs [1, 38, 39, 51]. To
ensure the satisfaction of intended properties in an unstable environment, the
system is able to make transitions between those programs. The execution of such
transitions is called an adaptation. By performing those, the system modifies its
future behaviour. In this context, one distinguishes between local properties that
specific programs must satisfy, global properties that must be satisfied by any
execution of the system, and transitional properties that must hold during an
adaptation.

To specify the transitional properties, Zhang et al. proposed a new logic
called A-LTL [50]. In their recent work [51], they provided an algorithm based
on marking to verify an adaptive system against an A-LTL formula. Although
we do not tackle the same problems, there are similarities in their work and
ours. Transposed to our work, a program of an adaptive system can be regarded
as a particular configuration. Although A-LTL and AdaCTL have incomparable
expressiveness, we can also express properties specific to some configurations as
well as transitional properties by using AdaCTL feature formulae.

Closer to the notion of dynamic software product lines, Kulkarni et al. [39]
consider that an adaptive system is a program able to add or remove components
during runtime. Our definition of A-FTS is more general, as the effect of features
is not limited to the addition or the removal of components. Instead of traditional
model checking, they use proof lattice as an alternative solution for verifying that
all possible adaptations satisfy all the global properties.

Instead of functional requirements, Filieri et al. [27] tackles the verification
of non-functional requirements like reliability in the context of adaptive systems.

For this purpose, they propose novel algorithms for checking efficiently paramet-
ric Markov models (viz. parametric discrete-time Markov chains). Combining our
work with theirs is an interesting perspective, as it could allow us to quantify
the impact of adding or removing features at runtime in terms of reliability,
performance or even energy consumption.

6.3 AdaCTL and ATL

As briefly mentioned in Section 4, there is a close relationship between AdaCTL
and the Alternating Time Logic (ATL) of Alur et al. [2]. Without going into much
detail or providing formal proofs, we compare our work with theirs and identify
the commonalities and differences between the two. ATL is a logic able to express
temporal properties on multi-agent systems and concurrent game structures. It
provides a special quantifier << A >> where A is a set of agents or players
working together to meet specific goals. The semantics of this operator makes
use of a definition of strategy as well : << A >> ϕ is satisfied if and only if the
players in A can find a strategy such that any execution following this strategy
satisfies ϕ. Given that definition, the AdaCTL quantifier A is clearly similar to
<< Sys >> whereas E is similar to << Sys,Env >>, Sys being the system
and Env being the environment.

The difference between the two logics is that in AdaCTL, the transition rela-
tion depends on the configuration of both the adaptable and the non-adaptable
features. Because of these features, the satisfiability relation is not binary and
is thus more general than in ATL. Similarly, an A-FTS with a unique initial
configuration can be translated into a two-player turn-based concurrent game
structure. In this game, the players are the system and the environment. The
action of the former is the choice of its new configuration. For the latter, it is
the choice of an action and of its new configuration. In the end, this work can be
regarded as a generalization of turn-based, 2-players concurrent game structures
in the same way that FTS generalizes LTS.

7 Conclusion

We have presented a well-founded framework for the modelling and analysis of
(self-)adaptive systems. We proposed a fundamental model, A-FTS, and a logic,
AdaCTL, that are the basis for algorithms for analyzing resilience. This brings
a number of benefits:

1. A sound theoretical basis;

2. An integration of static adaptation and dynamic adaptation, in its two vari-
ants: external adaptation and self-adaption by applying a pre-programmed
change at the adequate point of time;

3. A clear, checkable definition of resilience;

4. Providing counterexamples when resilience fails.

These benefits mainly impact the predictability of self-adaptive systems.

However, we are well aware that many topics need further development be-
fore our methodology can be used routinely by engineers. A-FTS are just a
fundamental model, that is used by the tools but leads to lengthy descriptions,
difficult to manage by humans. It is therefore important to provide more man-
ageable high-level languages, that can be compiled (on-the-fly) to A-FTS. These
languages need to cover different levels of abstraction: the most abstract levels
allowing a rapid analysis, while the most detailed can be directly used to gen-
erate executable code. This raise the question of refinement : can we guarantee
that the analysis performed at the abstract level remains valid at the more con-
crete level? This question can be solved e.g. using alternating refinement [3].
This refinement should be compositional, so that modules of the system can be
detailed independently, allowing teams to operate in parallel, on one hand, and
analysis tools to cope with complexity, on the other.

Some features have a cross-cutting nature: we cannot simply add a module
to the system to realize them. That is why we designed A-FTS with a low grain,
where individual transitions can refer to features. As a consequence, first, fea-
tures are spread over the whole A-FTS, and may be difficult to grasp; second, the
addition of a supplementary feature is difficult, since each transition might need
a revision. We plan thus to use (extensions of) the aspect-oriented approach to
maintain a more localized and independent description of each feature (previous
work on this topic includes [16, 31, 41]). The addition of a new feature will then
hopefully be more understandable. We consider as still unrealistic, though, to
hope that all features can be developed without being aware of other features,
and that the weaving process will solve all emergent interactions. This raises
the problem of defining, detecting and helping to solve feature interactions. A
number of interesting approaches [34, 10] are available, but the problem is still
pressing and largely unsolved.

We modelled failures as a subtype of environment features, which allows us
to describe failure modes and effects. To have a realistic analysis of failures,
we need to also model their probabilities, and to integrate (at least) classical
methods for failure and reliability analysis [25].

A-FTS is based on the notion of a global state, so that all the information
is available to both the system and its environment, and the strategies com-
puted can rely on the unbounded past. In our setting, it is demonstrated that
a bounded amount of information about the past is sufficient (finite memory).
Techniques such as antichains [28] can be used to heuristically compute strate-
gies that require a small memory. However, assuming complete observation is
not realistic in most systems, and in general we need to switch to the notion
of partial observation [14, 5]. Unfortunately, the problem becomes highly com-
plex and often even undecidable [11]. The known (expensive) techniques rely on
building all possible evolutions of the environment corresponding to the obser-
vations so far [14, 37]. A particular, easier problem is the diagnostic of failures
[46]: from the partial observation provided by its sensors, can the system infer
what has failed [46, 9]? Can it perform diagnostic actions to help inferring it?

Can it remedy to possible failures, even with a partial, ongoing diagnostic [44]?
Can it perform the diagnostic against an active adversary [9]?

On the other hand, we have assumed that the self-adaptive system can choose
among a set of preprogrammed dynamic system features. This more powerful
than it seems, since the system can, if needed, chain several features to construct
a complex plan to resist to a hostile environment. In particular, we can model
self-programming systems by giving as features, the atomic instructions to be
assembled. If the atomic instructions are infinite in number, however, our tech-
nique does not apply. In the long term, this might become a relevant challenge
for deeply self-adaptive autonomous systems.

Since they are domain-specific, we did not consider the technical means by
which new features will be added to a running system. This usually requires to
bring the system to a clean state, where the code can be adapted, downloading
the new code, before switching to the new configuration. This reconfiguration
might require resources that temporarily decrease the performance of the system.
Neither we did consider constraints on the implementation. For instance, a dis-
tributed implementation might be required [29]. Finally, our current algorithms
only provides any strategy satisfying the requirements, but no notion of prefer-
ence among strategies is introduced. In particular, one could prefer strategies
that use less memory, require less computation, or minimize some user-defined
cost.

Many systems operate in a continuous physical environment. Hybrid models
can be used to integrate the modelling of the continuous and discrete parts [48,
21]. Furthermore, a realistic strategy for a hybrid system must be robust, i.e.
able to cope with small disturbances [42]. A first step we did in this direction is
to incorporate real-time [49, 43, 20].

In summary, we hope to complement our approach with others, as needed
by the vast and multi-disciplinary area of self-adaptive systems, that are ex-
pected to progressively enter all domains [32], starting with controllers for space
[12], networked systems [35, 24], robotics [53], anti-intrusion systems [45], cloud
computing [52, 23], etc. where the need is most pressing.

References

1. R. Allen, R. Douence, and D. Garlan. Specifying and analyzing dynamic software
architectures. In Proceedings of FASE ’98, pages 21–37, Lisbon, Portugal, March
1998.

2. R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logic. J.
ACM, 49(5):672–713, Sept. 2002.

3. R. Alur, T. A. Henzinger, O. Kupferman, and M. Y. Vardi. Alternating refinement
relations. In Proceedings of CONCUR ’98, pages 163–178, London, UK, 1998.
Springer-Verlag.

4. S. Apel, H. Speidel, P. Wendler, A. von Rhein, and D. Beyer. Feature-interaction
detection using feature-aware verification. In Proceedings of ASE’11, pages 372–
375. IEEE Computer Society, 2011.

5. A. Arnold, A. Vincent, and I. Walukiewicz. Games for synthesis of controllers with
partial observation. Theoretical computer science, 303(1):7–34, 2003.

6. P. Asirelli, M. H. ter Beek, A. Fantechi, and S. Gnesi. A logical framework to deal
with variability. In Proceedings of IFM’10, pages 43–58, Berlin, Heidelberg, 2010.
IEEE.

7. P. Asirelli, M. H. ter Beek, A. Fantechi, and S. Gnesi. Formal description of
variability in product families. In Proceedings of SPLC’11, pages 130–139. Springer-
Verlag, 2011.

8. F. Bachmann, M. Goedicke, J. C. S. do Prado Leite, R. L. Nord, K. Pohl,
B. Ramesh, and A. Vilbig. A meta-model for representing variability in product
family development. In Proceedings of PFE ’03, pages 66–80, 2003.

9. D. Bresolin and M. Capiluppi. A game-theoretic approach to fault diagnosis and
identification of hybrid systems. Theoretical Computer Science, 2012. To appear.

10. M. Calder, M. Kolberg, E. Magill, and S. Reiff-Marganiec. Feature interaction: a
critical review and considered forecast. Computer Networks, 41(1):115–141, 2003.

11. K. Chatterjee, L. Doyen, and T. Henzinger. A survey of partial-observation stochas-
tic parity games. Formal Methods in System Design, pages 1–17, 2012.

12. W. Chen and M. Saif. Observer-based fault diagnosis of satellite systems subject
to time-varying thruster faults. Journal of dynamic systems, measurement, and
control, 129(3):352–356, 2007.

13. B. H. C. Cheng and al. Software engineering for Self-Adaptive systems: A research
roadmap. In B. H. C. Cheng, R. Lemos, H. Giese, P. Inverardi, and J. Magee,
editors, Software Engineering for Self-Adaptive Systems, volume 5525 of Lecture
Notes in Computer Science, chapter 1, pages 1–26. Springer, Berlin Heidelberg,
2009.

14. R. Cieslak, C. Desclaux, A. Fawaz, and P. Varaiya. Supervisory control of discrete-
event processes with partial observations. Automatic Control, IEEE Transactions
on, 33(3):249–260, 1988.

15. E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons
using branching-time temporal logic. In Logic of Programs, volume 131 of LNCS,
pages 52–71. Springer, 1981.

16. A. Classen, P. Heymans, P.-Y. Schobbens, and A. Legay. Symbolic model checking
of software product lines. In Proceedings of ICSE’11, pages 321–330. ACM, 2011.

17. A. Classen, P. Heymans, P.-Y. Schobbens, A. Legay, and J.-F. Raskin. Model
checking lots of systems: efficient verification of temporal properties in software
product lines. In Proceedings of ICSE ’10, pages 335–344, New York, NY, USA,
2010. ACM.

18. M. Cordy, A. Classen, P. Heymans, P.-Y. Schobbens, and A. Legay. Managing
evolution in software product lines : A model-checking perspective. In Proceedings
of VaMoS’12, pages 183–191. ACM, 2012.

19. M. Cordy, A. Classen, G. Perrouin, P. Heymans, P.-Y. Schobbens, and A. Legay.
Simulation-based abstractions for software product-line model checking. In Pro-
ceedings of ICSE’12. IEEE, 2012.

20. M. Cordy, P. Schobbens, P. Heymans, and A. Legay. Behavioural modelling and
verification of real-time software product lines. In Proceedings of the 16th Interna-
tional Software Product Line Conference-Volume 1, pages 66–75. ACM, 2012.

21. J. Cury, B. Krogh, and T. Niinomi. Synthesis of supervisory controllers for hybrid
systems based on approximating automata. Automatic Control, IEEE Transactions
on, 43(4):564–568, 1998.

22. K. Czarnecki and M. Antkiewicz. Mapping features to models: A template ap-
proach based on superimposed variants. In Proceedings of GPCE ’05, pages 422–
437, 2005.

23. E. Di Nitto, C. Ghezzi, A. Metzger, M. Papazoglou, and K. Pohl. A journey
to highly dynamic, self-adaptive service-based applications. Automated Software
Engineering, 15(3):313–341, 2008.

24. S. Dobson, S. Denazis, A. Fernández, D. Gäıti, E. Gelenbe, F. Massacci, P. Nixon,
F. Saffre, N. Schmidt, and F. Zambonelli. A survey of autonomic communications.
ACM Trans. Auton. Adapt. Syst., 1(2):223–259, Dec. 2006.

25. C. E. Ebeling. An introduction to reliability and maintainability engineering.
McGraw-Hill, 1997.

26. A. Fantechi and S. Gnesi. Formal modeling for product families engineering. In
SPLC, pages 193–202, 2008.

27. A. Filieri, C. Ghezzi, and G. Tamburrelli. Run-time efficient probabilistic model
checking. In Proceedings of ICSE’11, pages 341–350, 2011.

28. E. Filiot, N. Jin, and J.-F. Raskin. Antichains and compositional algorithms for ltl
synthesis. Formal Methods in System Design, 39:261–296, 2011. 10.1007/s10703-
011-0115-3.

29. B. Finkbeiner and S. Schewe. Uniform distributed synthesis. In Logic in Computer
Science, 2005. LICS 2005. Proceedings. 20th Annual IEEE Symposium on, pages
321–330. IEEE, 2005.

30. D. Fischbein, S. Uchitel, and V. Braberman. A foundation for behavioural con-
formance in software product line architectures. In Proceedings of ROSATEA’06,
pages 39–48. ACM Press, 2006.

31. N. Francez and I. R. Forman. Superimposition for interacting processes. In Pro-
ceedings of CONCUR’90, volume 458 of LNCS, pages 230–245. Springer, 1990.

32. H. Giese and B. H. C. Cheng, editors. SEAMS ’11: Proceedings of the 6th In-
ternational Symposium on Software Engineering for Adaptive and Self-Managing
Systems, New York, NY, USA, 2011. ACM.

33. H. Gomaa and M. Hussein. Dynamic software reconfiguration in software product
families. In F. van der Linden, editor, Proceedings of PFE ’03, volume 3014 of
Lecture Notes in Computer Science, pages 435–444. Springer Berlin / Heidelberg,
2004.

34. N. Griffeth, Y.-J. Lin, and al. Feature interactions in telecommunications and
software systems (FIW, ICFI). Ios Press, 1992-2012.

35. T. Gross and H. Sayama. Adaptive Networks: Theory, Models and Applications.
Understanding Complex Systems. Springer, 2009.

36. A. Gruler, M. Leucker, and K. Scheidemann. Modeling and model checking soft-
ware product lines. In Proceedings of FMOODS’08, pages 113–131. Springer, 2008.

37. G. Kalyon, T. Le Gall, H. Marchand, and T. Massart. Symbolic supervisory control
of infinite transition systems under partial observation using abstract interpreta-
tion. Discrete Event Dynamic Systems, pages 1–41, 2012.

38. J. Kramer and J. Magee. Analysing dynamic change in software architectures: A
case study. In Proceedings of the International Conference on Configurable Dis-
tributed Systems, Proceedings of CDS ’98, pages 91–100, Washington, DC, USA,
1998. IEEE Computer Society.

39. S. Kulkarni and K. Biyani. Correctness of component-based adaptation. In
I. Crnkovic, J. Stafford, H. Schmidt, and K. Wallnau, editors, Proceedings of CBSE
’04, volume 3054 of Lecture Notes in Computer Science, pages 48–58. Springer
Berlin / Heidelberg, 2004.

40. H. C. Li, S. Krishnamurthi, and K. Fisler. Interfaces for modular feature verifica-
tion. In Proceedings of ASE’02, pages 195–204, 2002.

41. H. C. Li, S. Krishnamurthi, and K. Fisler. Verifying cross-cutting features as open
systems. In SIGSOFT FSE, pages 89–98, 2002.

42. R. Majumdar, E. Render, and P. Tabuada. Robust discrete synthesis against
unspecified disturbances. In Proceedings of the 14th international conference on
Hybrid systems: computation and control, HSCC ’11, pages 211–220, New York,
NY, USA, 2011. ACM.

43. O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of discrete controllers for
timed systems. In STACS 95, pages 229–242. Springer, 1995.

44. A. Paoli, M. Sartini, and S. Lafortune. Active fault tolerant control of discrete
event systems using online diagnostics. Automatica, 47(4):639 – 649, 2011.

45. D. Ragsdale, C. Carver Jr, J. Humphries, and U. Pooch. Adaptation techniques
for intrusion detection and intrusion response systems. In Systems, Man, and
Cybernetics, 2000 IEEE International Conference on, volume 4, pages 2344–2349.
IEEE, 2000.

46. M. SAMPATH, R. SENGUPTA, S. LAFORTUNE, K. SINNAMOHIDEEN, and
D. TENEKETZIS. Diagnosability of discrete event system. IEEE Transactions on
Automatic Control, 40(9):1555–1575, Sept. 1995.

47. P.-Y. Schobbens, P. Heymans, J.-C. Trigaux, and Y. Bontemps. Feature Diagrams:
A Survey and A Formal Semantics. In Proceedings of RE ’06, pages 139–148, 2006.

48. H. Wong-Toi. The synthesis of controllers for linear hybrid automata. In Decision
and Control, 1997., Proceedings of the 36th IEEE Conference on, volume 5, pages
4607–4612. IEEE, 1997.

49. H. Wong-Toi and G. Hoffmann. The control of dense real-time discrete event
systems. In Decision and Control, 1991., Proceedings of the 30th IEEE Conference
on, pages 1527–1528. IEEE, 1991.

50. J. Zhang and B. H. Cheng. Using temporal logic to specify adaptive program
semantics. Journal of Systems and Software, 79(10):1361 – 1369, 2006.

51. J. Zhang, H. J. Goldsby, and B. H. Cheng. Modular verification of dynamically
adaptive systems. In Proceedings of AOSD ’09, pages 161–172, New York, NY,
USA, 2009. ACM.

52. Q. Zhang, L. Cheng, and R. Boutaba. Cloud computing: state-of-the-art and
research challenges. Journal of Internet Services and Applications, 1(1):7–18, 2010.

53. C. Zhong and S. A. DeLoach. Runtime models for automatic reorganization of
multi-robot systems. In Proceedings of the 6th International Symposium on Soft-
ware Engineering for Adaptive and Self-Managing Systems, SEAMS ’11, pages
20–29, New York, NY, USA, 2011. ACM.

