Projets par an
Résumé
Self-Service Business Intelligence (SSBI) increases decision-making reactivity of companies by facilitating the data use by non-IT experts. An important SSBI dimension is data querying where businesspeople create their own queries by reducing the technical complexity of formal languages like SQL. However, existing solutions ignore two other key challenges of data querying identified in the literature: the databases technical jargon and the data overload. In this paper, we propose, following the Design Science Research methodology, a framework (i.e. DatAssistant) to complement existing querying solutions with two new theoretical artifacts. The first bridges the semantic gap between technical databases and businesspeople via a business-aware ontology of the Data Warehouse mapped to the business Data Catalog. The second artifact filters data overload by mobilizing a hybrid recommender engine combining semantic systems and business rules. This paper then demonstrates the validity and applicability of the framework through its technical implementation in a real-world environment.
langue originale | Anglais |
---|---|
Pages (de - à) | 593-606 |
Nombre de pages | 14 |
journal | Journal of Computer Information Systems |
Volume | 64 |
Numéro de publication | 5 |
Les DOIs | |
Etat de la publication | Publié - 19 juil. 2023 |
Empreinte digitale
Examiner les sujets de recherche de « Business-Driven Data Recommender System: Design and Implementation ». Ensemble, ils forment une empreinte digitale unique.Projets
- 1 Actif
-
ARIAC by DigitalWallonia4.AI: Applications et Recherche pour une Intelligence Artificielle de Confiance (TRAIL-Foundations)
Frénay, B. (Responsable du Projet), Jacquet, J.-M. (CoPI) & Dumas, B. (CoPI)
1/01/21 → 30/09/27
Projet: Recherche