Air-stable, non-volatile resistive memory based on hybrid organic/inorganic nanocomposites

Giulia Casula, Piero Cosseddu, Yan Busby, Jean Jacques Pireaux, Marcin Rosowski, Beata Tkacz Szczesna, Katarzyna Soliwoda, Grzegorz Celichowski, Jaroslaw Grobelny, Jiří Novák, Rupak Banerjee, Frank Schreiber, Annalisa Bonfiglio

Résultats de recherche: Contribution à un journal/une revueArticle

Résumé

A non-volatile memory element based on organic/inorganic nanocomposites is presented. The device can be operated in ambient conditions, showing high retention time and long-term life time. The formation/rupture of metallic filaments in the organic matrix is investigated by HR-XPS and ToF-SIMS analysis, and is demonstrated to be the driving mechanism for the resistive switching.

langue originaleAnglais
Pages (de - à)17-23
Nombre de pages7
journalOrganic Electronics: physics, materials, applications
Volume18
Les DOIs
étatPublié - 2015

Empreinte digitale

Secondary ion mass spectrometry
secondary ion mass spectrometry
filaments
Nanocomposites
nanocomposites
X ray photoelectron spectroscopy
Data storage equipment
life (durability)
air
matrices
Air

Citer ceci

Casula, Giulia ; Cosseddu, Piero ; Busby, Yan ; Pireaux, Jean Jacques ; Rosowski, Marcin ; Tkacz Szczesna, Beata ; Soliwoda, Katarzyna ; Celichowski, Grzegorz ; Grobelny, Jaroslaw ; Novák, Jiří ; Banerjee, Rupak ; Schreiber, Frank ; Bonfiglio, Annalisa. / Air-stable, non-volatile resistive memory based on hybrid organic/inorganic nanocomposites. Dans: Organic Electronics: physics, materials, applications. 2015 ; Vol 18. p. 17-23.
@article{39131d11e5d84e87b29e7c02d1ef2cf4,
title = "Air-stable, non-volatile resistive memory based on hybrid organic/inorganic nanocomposites",
abstract = "A non-volatile memory element based on organic/inorganic nanocomposites is presented. The device can be operated in ambient conditions, showing high retention time and long-term life time. The formation/rupture of metallic filaments in the organic matrix is investigated by HR-XPS and ToF-SIMS analysis, and is demonstrated to be the driving mechanism for the resistive switching.",
keywords = "Filamentary conduction, Metal nanoparticles, Organic memories, Resistive switching",
author = "Giulia Casula and Piero Cosseddu and Yan Busby and Pireaux, {Jean Jacques} and Marcin Rosowski and {Tkacz Szczesna}, Beata and Katarzyna Soliwoda and Grzegorz Celichowski and Jaroslaw Grobelny and Jiř{\'i} Nov{\'a}k and Rupak Banerjee and Frank Schreiber and Annalisa Bonfiglio",
year = "2015",
doi = "10.1016/j.orgel.2015.01.001",
language = "English",
volume = "18",
pages = "17--23",
journal = "Organic Electronics: physics, materials, applications",
issn = "1566-1199",
publisher = "Elsevier",

}

Casula, G, Cosseddu, P, Busby, Y, Pireaux, JJ, Rosowski, M, Tkacz Szczesna, B, Soliwoda, K, Celichowski, G, Grobelny, J, Novák, J, Banerjee, R, Schreiber, F & Bonfiglio, A 2015, 'Air-stable, non-volatile resistive memory based on hybrid organic/inorganic nanocomposites', Organic Electronics: physics, materials, applications, VOL. 18, p. 17-23. https://doi.org/10.1016/j.orgel.2015.01.001

Air-stable, non-volatile resistive memory based on hybrid organic/inorganic nanocomposites. / Casula, Giulia; Cosseddu, Piero; Busby, Yan; Pireaux, Jean Jacques; Rosowski, Marcin; Tkacz Szczesna, Beata; Soliwoda, Katarzyna; Celichowski, Grzegorz; Grobelny, Jaroslaw; Novák, Jiří; Banerjee, Rupak; Schreiber, Frank; Bonfiglio, Annalisa.

Dans: Organic Electronics: physics, materials, applications, Vol 18, 2015, p. 17-23.

Résultats de recherche: Contribution à un journal/une revueArticle

TY - JOUR

T1 - Air-stable, non-volatile resistive memory based on hybrid organic/inorganic nanocomposites

AU - Casula, Giulia

AU - Cosseddu, Piero

AU - Busby, Yan

AU - Pireaux, Jean Jacques

AU - Rosowski, Marcin

AU - Tkacz Szczesna, Beata

AU - Soliwoda, Katarzyna

AU - Celichowski, Grzegorz

AU - Grobelny, Jaroslaw

AU - Novák, Jiří

AU - Banerjee, Rupak

AU - Schreiber, Frank

AU - Bonfiglio, Annalisa

PY - 2015

Y1 - 2015

N2 - A non-volatile memory element based on organic/inorganic nanocomposites is presented. The device can be operated in ambient conditions, showing high retention time and long-term life time. The formation/rupture of metallic filaments in the organic matrix is investigated by HR-XPS and ToF-SIMS analysis, and is demonstrated to be the driving mechanism for the resistive switching.

AB - A non-volatile memory element based on organic/inorganic nanocomposites is presented. The device can be operated in ambient conditions, showing high retention time and long-term life time. The formation/rupture of metallic filaments in the organic matrix is investigated by HR-XPS and ToF-SIMS analysis, and is demonstrated to be the driving mechanism for the resistive switching.

KW - Filamentary conduction

KW - Metal nanoparticles

KW - Organic memories

KW - Resistive switching

UR - http://www.scopus.com/inward/record.url?scp=84921038533&partnerID=8YFLogxK

U2 - 10.1016/j.orgel.2015.01.001

DO - 10.1016/j.orgel.2015.01.001

M3 - Article

AN - SCOPUS:84921038533

VL - 18

SP - 17

EP - 23

JO - Organic Electronics: physics, materials, applications

JF - Organic Electronics: physics, materials, applications

SN - 1566-1199

ER -