Projets par an
Résumé
This paper focuses on an Adaptive Cubic Regularisation (ARC) method for
approximating a second-order critical point of a finite sum minimisation problem.
The variant presented belongs to the framework of Bellavia, Gurioli, Morinin
and Toint (2020): it employs random models with accuracy guaranteed with a
sufficiently large prefixed probability and deterministic inexact function
evaluations within a prescribed level of accuracy. Without assuming unbiased
estimators, the expected number of iterations is O( epsilon_1^{-3/2} ) or O( \max[ epsilon_1^{-3/2},epsilon_2^{-3} ] ) when searching for a first- or second-order critical point, respectively, where epsilon_j is the jth-order tolerance. These results match the worst-case optimal complexity for the deterministic counterpart of the method.
approximating a second-order critical point of a finite sum minimisation problem.
The variant presented belongs to the framework of Bellavia, Gurioli, Morinin
and Toint (2020): it employs random models with accuracy guaranteed with a
sufficiently large prefixed probability and deterministic inexact function
evaluations within a prescribed level of accuracy. Without assuming unbiased
estimators, the expected number of iterations is O( epsilon_1^{-3/2} ) or O( \max[ epsilon_1^{-3/2},epsilon_2^{-3} ] ) when searching for a first- or second-order critical point, respectively, where epsilon_j is the jth-order tolerance. These results match the worst-case optimal complexity for the deterministic counterpart of the method.
langue originale | Anglais |
---|---|
Etat de la publication | Accepté/sous presse - 2020 |
Evénement | Thirty-seventh International Conference on Machine Learning: ICML2020 - Durée: 13 juil. 2020 → 18 juil. 2020 |
Une conférence
Une conférence | Thirty-seventh International Conference on Machine Learning |
---|---|
période | 13/07/20 → 18/07/20 |
Empreinte digitale Examiner les sujets de recherche de « A stochastic ARC method with inexact function and random derivatives evaluations ». Ensemble, ils forment une empreinte digitale unique.
Projets
- 2 Actif
-
Complexity in nonlinear optimization
TOINT, P., Gould, N. I. M. & Cartis, C.
1/11/08 → …
Projet: Recherche
-
ADALGOPT: ADALGOPT - Algorithmes avancés en optimisation non-linéaire
1/01/87 → …
Projet: Axe de recherche