A recursive ℓ-trust-region method for bound-constrained nonlinear optimization

Serge Gratton, M. Mouffe, Philippe Toint, M. Weber-Mendona

Résultats de recherche: Contribution à un journal/une revueArticleRevue par des pairs


A recursive trust-region method is introduced for the solution of bound-cons-trained nonlinear nonconvex optimization problems for which a hierarchy of descriptions exists. Typical cases are infinite-dimensional problems for which the levels of the hierarchy correspond to discretization levels, from coarse to fine. The new method uses the infinity norm to define the shape of the trust region, which is well adapted to the handling of bounds and also to the use of successive coordinate minimization as a smoothing technique. Numerical tests motivate a theoretical analysis showing convergence to first-order critical points irrespective of the starting point.
langue originaleAnglais
Pages (de - à)827-861
Nombre de pages35
journalIMA Journal of Numerical Analysis
Numéro de publication4
Les DOIs
Etat de la publicationPublié - 1 oct. 2008

Empreinte digitale Examiner les sujets de recherche de « A recursive ℓ-trust-region method for bound-constrained nonlinear optimization ». Ensemble, ils forment une empreinte digitale unique.

Contient cette citation