Using approximate secant equations in limited memory methods for multilevel unconstrained optimization

Serge Gratton, Vincent Malmedy, Philippe Toint

Résultats de recherche: Contribution à un journal/une revueArticleRevue par des pairs

95 Téléchargements (Pure)

Résumé

The properties of multilevel optimization problems defined on a hierarchy of discretization grids can be used to define approximate secant equations, which describe the second-order behavior of the objective function. Following earlier work by Gratton and Toint (2009) we introduce a quasi-Newton method (with a linesearch) and a nonlinear conjugate gradient method that both take advantage of this new second-order information. We then present numerical experiments with these methods and formulate recommendations for their practical use. © Springer Science+Business Media, LLC 2011.
langue originaleAnglais
Pages (de - à)967-979
Nombre de pages13
journalComputational Optimization and Applications
Volume51
Numéro de publication3
Les DOIs
Etat de la publicationPublié - 1 avr. 2012

Empreinte digitale Examiner les sujets de recherche de « Using approximate secant equations in limited memory methods for multilevel unconstrained optimization ». Ensemble, ils forment une empreinte digitale unique.

Contient cette citation