The information geometry of sparse goodness-of-fit testing

Paul Marriott, Radka Sabolová, Germain Van Bever, Frank Critchley

Résultats de recherche: Contribution à un journal/une revueArticleRevue par des pairs


This paper takes an information-geometric approach to the challenging issue of goodness-of-fit testing in the high dimensional, low sample size context where-potentially-boundary effects dominate. The main contributions of this paper are threefold: first, we present and prove two new theorems on the behaviour of commonly used test statistics in this context; second, we investigate-in the novel environment of the extended multinomial model-the links between information geometry-based divergences and standard goodness-of-fit statistics, allowing us to formalise relationships which have been missing in the literature; finally, we use simulation studies to validate and illustrate our theoretical results and to explore currently open research questions about the way that discretisation effects can dominate sampling distributions near the boundary. Novelly accommodating these discretisation effects contrasts sharply with the essentially continuous approach of skewness and other corrections flowing from standard higher-order asymptotic analysis.

langue originaleAnglais
Numéro d'article421
Numéro de publication12
Les DOIs
Etat de la publicationPublié - 2016
Modification externeOui

Empreinte digitale

Examiner les sujets de recherche de « The information geometry of sparse goodness-of-fit testing ». Ensemble, ils forment une empreinte digitale unique.

Contient cette citation