Scaling law in the standard map critical function. Interpolating Hamiltonian and frequency map analysis

Timoteo Carletti, Jacques Laskar

    Résultats de recherche: Contribution à un journal/une revueArticleRevue par des pairs

    37 Téléchargements (Pure)

    Résumé

    We study the behaviour of the standard map critical function in a neighbourhood of a fixed resonance, that is the scaling law at the fixed resonance. We prove that for the fundamental resonance the scaling law is linear. We show numerical evidence that for the other resonances p/q, q>1, p \neq 0 and p and q relatively prime, the scaling law follows a power-law with exponent 1/q.
    langue originaleAnglais
    Pages (de - à)2033-2061
    Nombre de pages29
    journalNonlinearity
    Volume13
    Etat de la publicationPublié - 2000

    Empreinte digitale

    Examiner les sujets de recherche de « Scaling law in the standard map critical function. Interpolating Hamiltonian and frequency map analysis ». Ensemble, ils forment une empreinte digitale unique.

    Contient cette citation