Observational signatures of a non-singular bouncing cosmology

Marc Lilley, Larissa Lorenz, Sebastien Clesse

Résultats de recherche: Contribution à un journal/une revueArticleRevue par des pairs


We study a cosmological scenario in which inflation is preceded by a bounce. In this scenario, the primordial singularity, one of the major shortcomings of inflation, is replaced by a non-singular bounce, prior to which the universe undergoes a phase of contraction. Our starting point is the bouncing cosmology investigated in Falciano et al. (2008), which we complete by a detailed study of the transfer of cosmological perturbations through the bounce and a discussion of possible observational effects of bouncing cosmologies. We focus on a symmetric bounce and compute the evolution of cosmological perturbations during the contracting, bouncing and inflationary phases. We derive an expression for the Mukhanov-Sasaki perturbation variable at the onset of the inflationary phase that follows the bounce. Rather than being in the Bunch-Davies vacuum, it is found to be in an excited state that depends on the time scale of the bounce. We then show that this induces oscillations superimposed on the nearly scale-invariant primordial spectra for scalar and tensor perturbations. We discuss the effects of these oscillations in the cosmic microwave background and in the matter power spectrum. We propose a new way to indirectly measure the spatial curvature energy density parameter in the context of this model.
langue originaleAnglais
Nombre de pages40
Numéro de publication004
Etat de la publicationPublié - 18 avr. 2011
Modification externeOui

Empreinte digitale

Examiner les sujets de recherche de « Observational signatures of a non-singular bouncing cosmology ». Ensemble, ils forment une empreinte digitale unique.

Contient cette citation