Hypothesis testing for tail dependence parameters on the boundary of the parameter space

    Résultats de recherche: Contribution à un journal/une revueArticleRevue par des pairs

    11 Téléchargements (Pure)

    Résumé

    Modelling multivariate tail dependence is one of the key challenges in extreme-value theory. Multivariate extremes are usually characterized using parametric models, some of which have simpler submodels at the boundary of their parameter space. Hypothesis tests are proposed for tail dependence parameters that, under the null hypothesis, are on the boundary of the alternative hypothesis. The asymptotic distribution of the weighted least squares estimator is given when the true parameter vector is on the boundary of the parameter space, and two test statistics are proposed. The performance of these test statistics is evaluated for the Brown–Resnick model and the max-linear model. In particular, simulations show that it is possible to recover the optimal number of factors for a max-linear model. Finally, the methods are applied to characterize the dependence structure of two major stock market indices, the DAX and the CAC40.

    langue originaleAnglais
    Pages (de - à)121-135
    Nombre de pages15
    journalEconometrics and Statistics
    Volume16
    Les DOIs
    Etat de la publicationPublié - oct. 2020

    Empreinte digitale

    Examiner les sujets de recherche de « Hypothesis testing for tail dependence parameters on the boundary of the parameter space ». Ensemble, ils forment une empreinte digitale unique.

    Contient cette citation