Word statistics in Blogs and RSS feeds: Towards empirical universal evidence

R. Lambiotte, M. Ausloos, M. Thelwall

    Research output: Contribution to journalArticlepeer-review

    786 Downloads (Pure)


    We focus on the statistics of word occurrences and of the waiting times between such occurrences in Blogs. Due to the heterogeneity of words' frequencies, the empirical analysis is performed by studying classes of "frequently-equivalent" words, i.e. by grouping words depending on their frequencies. Two limiting cases are considered: the dilute limit, i.e. for those words that are used less than once a day, and the dense limit for frequent words. In both cases, extreme events occur more frequently than expected from the Poisson hypothesis. These deviations from Poisson statistics reveal non-trivial time correlations between events that are associated with bursts of activities. The distribution of waiting times is shown to behave like a stretched exponential and to have the same shape for different sets of words sharing a common frequency, thereby revealing universal features.
    Original languageEnglish
    Pages (from-to)277-286
    Number of pages10
    JournalJournal of Informetrics
    Issue number4
    Publication statusPublished - 1 Jan 2007


    Dive into the research topics of 'Word statistics in Blogs and RSS feeds: Towards empirical universal evidence'. Together they form a unique fingerprint.

    Cite this