Three-Dimensional Rotational Averaging Using Irreducible Sets of Linearly Independent Fundamental Isotropic Cartesian Tensors: A Computational Approach

Research output: Contribution to journalArticlepeer-review

Abstract

The theoretical formulation of linear and nonlinear molecular spectroscopies applied to isotropic samples (e.g., liquid or gas solutions) goes through a fundamental step known as the rotational averaging of Cartesian tensors. Rotational averaging of Cartesian tensors is a mathematical procedure from which the expressions for the rotationally invariant observables (e.g., rates or intensities), associated with a given spectroscopic process, can be found. In this work, the mathematical/computational procedure for finding the rotational averages of Cartesian tensors of any rank n, which is based on the use of the fundamental isotropic Cartesian tensors (FICTs), is discussed. Moreover, for the first time, a heuristic computational method for finding a set of linearly independent FICTs is proposed. The procedure has been tested for 2 ≤ n ≤ 12, where most of the linear and nonlinear molecular spectroscopies apply (e.g., one-photon and multiphoton absorption, emission, electronic circular dichroism, Raman optical activity, coherent and incoherent mth-harmonic generation, etc.). Finally, it is shown how this computational procedure can be extended for n > 12.

Original languageEnglish
Pages (from-to)7801-7815
Number of pages15
JournalJournal of Chemical Theory and Computation
Volume19
Issue number21
DOIs
Publication statusPublished - 14 Nov 2023

Fingerprint

Dive into the research topics of 'Three-Dimensional Rotational Averaging Using Irreducible Sets of Linearly Independent Fundamental Isotropic Cartesian Tensors: A Computational Approach'. Together they form a unique fingerprint.

Cite this