Thermomechanical Response of a Representative Porin for Biomimetics

Maximilien Lopes Rodrigues, Anna Puiggalí-Jou, D Marti-Balleste, Luis J del Valle, Catherine Michaux, Eric Perpète, Carlos Alemán

Research output: Contribution to journalArticlepeer-review

32 Downloads (Pure)

Abstract

The thermomechanical response of Omp2a, a representative porin used for the fabrication of smart biomimetic nanomembranes, has been characterized using microcantilever technology and compared with standard proteins. For this purpose, thermally induced transitions involving the conversion of stable trimers to bigger aggregates, local reorganizations based on the strengthening or weakening of intermolecular interactions, and protein denaturation have been detected by the microcantilever resonance frequency and deflection as a function of the temperature. Measurements have been carried out on arrays of 8-microcantilevers functionalized with proteins (Omp2a, lysozyme and bovine serum albumin). To interpret the measured nanofeatures, the response of proteins to temperature has been also examined using other characterization techniques, including real time wide angle X-ray diffraction. Results not only demonstrate the complex behavior of porins, which exhibit multiple local thermal transitions before undergoing denaturation at temperatures higher than 105 °C, but also suggest a posttreatment to control the orientation of immobilized Omp2a molecules in functionalized biomimetic nanomembranes and, thus, increase their efficacy in ion transport.

Original languageEnglish
Pages (from-to)7856-7867
Number of pages12
JournalACS Omega
Volume3
Issue number7
DOIs
Publication statusPublished - 31 Jul 2018

Fingerprint

Dive into the research topics of 'Thermomechanical Response of a Representative Porin for Biomimetics'. Together they form a unique fingerprint.

Cite this