Temporal Pattern of (Re)Tweets Reveal Cascade Migration

Ayan Kumar Bhowmick, Martin Gueuning, Jean-Charles Delvenne, Renaud Lambiotte, Bivas Mitra

Research output: Contribution in Book/Catalog/Report/Conference proceedingConference contribution

Abstract

Twitter has recently become one of the most popular online social networking websites where users can share news and ideas through messages in the form of tweets. As a tweet gets retweeted from user to user, large cascades of information diffusion are formed over the Twitter follower network. Existing works on cascades have mainly focused on predicting their popularity in terms of size. In this paper, we leverage on the temporal pattern of retweets to model the diffusion dynamics of a cascade. Notably, retweet cascades provide two complementary information: (a) inter-retweet time intervals of retweets, and (b) diffusion of cascade over the underlying follower network. Using datasets from Twitter, we identify two types of cascades based on presence or absence of early peaks in their sequence of inter-retweet intervals. We identify multiple diffusion localities associated with a cascade as it propagates over the network. Our studies reveal the transition of a cascade to a new locality facilitated by pivotal users that are highly cascade dependent following saturation of current locality. We propose an analytical model to show co-occurrence of first peaks and cascade migration to a new locality as well as predict locality saturation from inter-retweet intervals. Finally, we validate these claims from empirical data showing co-occurrence of first peaks and migration with good accuracy; we obtain even better accuracy for successfully classifying saturated and non-saturated diffusion localities from inter-retweet intervals.

Original languageEnglish
Title of host publicationProceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2017
EditorsJana Diesner, Elena Ferrari, Guandong Xu
Place of PublicationNew York, NY, USA
PublisherACM Press
Pages483-488
Number of pages6
ISBN (Electronic)9781450349932
ISBN (Print)978-1-4503-4993-2
DOIs
Publication statusPublished - 31 Jul 2017

Publication series

NameProceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2017

Keywords

  • Diffusion locality, cascade migration, inter-retweet intervals, pivotal user
  • Diffusion locality
  • Cascade migration
  • Inter-retweet intervals
  • Pivotal user

Fingerprint Dive into the research topics of 'Temporal Pattern of (Re)Tweets Reveal Cascade Migration'. Together they form a unique fingerprint.

Cite this