HgII-Mediated TlI-to-TlIII Oxidation in Dynamic PbII/Tl Porphyrin Complexes

Stéphane Le Gac, Victoria Ndoyom, Luca Fusaro, Vincent Dorcet, Bernard Boitrel

Research output: Contribution to journalArticle

Abstract

Compared with their purely organic counterparts, molecular switches that are based on metal ion translocations have been underexplored, and more particularly, it remains challenging to control the translocation of several particles in multisite receptors. Recently, bimetallic complexes that undergo double translocation processes have been developed with bis-strapped porphyrin ligands. To implement a redox control for these systems, we have investigated the formation of heterobimetallic lead/thallium complexes, with thallium in the +I and +III oxidation states. Two different complexes were characterized: 1) a Pb II/Tl I complex, in which both metal ions interact with the N-core on its different sides, and 2) a Pb II/Tl III complex with Tl III selectively bound to the N-core and Pb II selectively bound to the strap opposite to Tl III. These two complexes undergo interconversion between their two degenerate forms (same coordination of the metal ions but on opposite sides) by different intra or intermolecular translocation pathways. In addition, conversion of the Pb II/Tl I complex into its Pb II/Tl III counterpart was achieved by addition of a stoichiometric amount of Hg II salt as a sacrificial electron acceptor. These results further contribute to the elaboration of devices that feature redox-controlled compartmentalized double translocations.

Original languageEnglish
Pages (from-to)845-853
Number of pages9
JournalChemistry: A European Journal
Volume25
Issue number3
DOIs
Publication statusPublished - 14 Jan 2019

    Fingerprint

Keywords

  • bimetallic complexes
  • lead
  • porphyrinoids
  • supramolecular chemistry
  • thallium

Cite this