A momentum-space representation of Green's functions with modified dispersion on ultra-static space-time

Massimiliano Rinaldi

    Research output: Contribution to journalArticlepeer-review

    13 Downloads (Pure)

    Abstract

    We consider the Green's functions associated to a scalar field propagating on a curved, ultra-static background, in the presence of modified dispersion relations. The usual proper-time deWitt-Schwinger procedure to obtain a series representation of the Green's functions is doomed to failure, because of higher order spatial derivatives in the Klein-Gordon operator. We show how to overcome this difficulty by considering a preferred frame, associated to a unit time-like vector. With respect to this frame, we can express the Green's functions as an integral over all frequencies of a space-dependent function. The latter can be expanded in momentum space, as a series with geometric coefficients similar to the deWitt-Schwinger's ones. By integrating over all frequencies, we finally find the expansion of the Green's function up to four derivatives of the metric tensor. The relation with the proper-time formalism is also discussed.
    Original languageUndefined/Unknown
    JournalPhysical Review D
    DOIs
    Publication statusPublished - 17 Sep 2007

    Cite this