Mercury rigid rotation: long periods effects

Thèse de l'étudiant: Doc typesDocteur en Sciences

Résumé

Dans le but de décrire la rotation résonante rigide de Mercure, différents modèles de rotation résonante de type 3 : 2 à deux et trois dimensions, moyennisés sur les courtes périodes et exprimés en formalisme hamiltonien sont proposés. Dans le premier modèle, l’axe de rotation de Mercure est confondu avec son plus petit axe d’inertie et la planète n’est soumise à l’action d’aucune force autre que celle de la gravitation. Le couplage de ces 2 degrés de liberté est mis en évidence. Un modèle à 3 degrés de liberté tenant compte de la dissociation de l’axe du moment angulaire et de l’axe de figure est ensuite présenté. Dans ces deux modèles, le développement du potentiel est limité à l’ordre 2 en excentricité. Afin d’estimer l’erreur commise par ce choix de troncature, les Hamiltoniens sont développés à des ordres plus élevés; les nouveaux termes ainsi obtenus sont considérés comme des perturbations et traités à l’aide de la théorie de Lie. L’influence des autres planètes du Système Solaire est enfin étudiée en incluant, dans un premier temps, une précession constante du noeud ascendant et du péricentre dans notre modèle de base et, dans un second temps, en considérant que l’inclinaison et l’excentricité sont des fonctions lentes du temps permettant l’utilisation de la théorie de l’invariant adiabatique étendue à 2 degrés de liberté. Une étude des équilibres et des périodes propres de chaque modèle est réalisée.
Date de réussite26 sept. 2007
langueAnglais
Institution diplomante
  • Université de Namur
SuperviseurAnne Lemaitre (Promoteur), Timoteo Carletti (Jury), Jacques Henrard (Jury), Ugo Locatelli (Jury) & Jean SOUCHAY (Jury)

mots-clés

  • Rotation
  • Résonance spin-orbite
  • Long periods
  • Hamiltonian formalism
  • Mercury
  • Spin-orbit resonance
  • Formalisme Hamiltonien
  • Longues périodes
  • Rotation
  • Mercure

Citer ceci

Mercury rigid rotation: long periods effects
D'Hoedt, S. (Auteur). 26 sept. 2007

Thèse de l'étudiant: Doc typesDocteur en Sciences