Worst-case evaluation complexity for unconstrained nonlinear optimization using high-order regularized models

E. G. Birgin, J. L. Gardenghi, J. M. Martínez, S. A. Santos, P. L. Toint

Résultats de recherche: Contribution à un journal/une revueArticleRevue par des pairs

Résumé

The worst-case evaluation complexity for smooth (possibly nonconvex) unconstrained optimization is considered. It is shown that, if one is willing to use derivatives of the objective function up to order p (for p≥ 1 ) and to assume Lipschitz continuity of the p-th derivative, then an ϵ-approximate first-order critical point can be computed in at most O(ϵ - ( p + 1 ) / p) evaluations of the problem’s objective function and its derivatives. This generalizes and subsumes results known for p= 1 and p= 2.

langue originaleAnglais
Pages (de - à)359-368
Nombre de pages10
journalMathematical Programming
Volume163
Numéro de publication1-2
Les DOIs
Etat de la publicationPublié - 15 avr. 2017

Empreinte digitale

Examiner les sujets de recherche de « Worst-case evaluation complexity for unconstrained nonlinear optimization using high-order regularized models ». Ensemble, ils forment une empreinte digitale unique.

Contient cette citation