Résultat de recherche par an
Résultat de recherche par an
Coralia Cartis, Nicholas I.M. Gould, Philippe Toint
Résultats de recherche: Contribution dans un livre/un catalogue/un rapport/dans les actes d'une conférence › Article dans les actes d'une conférence/un colloque
We establish or refute the optimality of inexact second-order methods for unconstrained nonconvex optimization from the point of view of worst-case evaluation complexity, improving and generalizing our previous results. To this aim, we consider a new general class of inexact second-order algorithms for unconstrained optimization that includes regularization and trust-region variations of Newton’s method as well as of their linesearch variants. For each method in this class and arbitrary accuracy threshold ∊ 2 (0; 1), we exhibit a smooth objective function with bounded range, whose gradient is globally Lipschitz continuous and whose Hessian is α-Hölder continuous (for given α 2 [0; 1]), for which the method in question takes at least b∊-(2+α)/(1+α)c function evaluations to generate a first iterate whose gradient is smaller than ∊ in norm. Moreover, we also construct another function on which Newton’s takes b∊-2c evaluations, but whose Hessian is Lipschitz continuous on the path of iterates. These examples provide lower bounds on the worst-case evaluation complexity of methods in our class when applied to smooth problems satisfying the relevant assumptions. Furthermore, for α = 1, this lower bound is of the same order in ∊ as the upper bound on the worst-case evaluation complexity of the cubic regularization method and other algorithms in a class of methods recently proposed by Curtis, Robinson and Samadi or by Royer and Wright, thus implying that these methods have optimal worst-case evaluation complexity within a wider class of second-order methods, and that Newton’s method is suboptimal.
langue originale | Anglais |
---|---|
titre | Invited Lectures |
rédacteurs en chef | Boyan Sirakov, Paulo Ney de Souza, Marcelo Viana |
Editeur | World Scientific Publishing Co Pte Ltd |
Pages | 3729-3768 |
Nombre de pages | 40 |
ISBN (Electronique) | 9789813272934 |
Etat de la publication | Publié - 1 janv. 2018 |
Evénement | 2018 International Congress of Mathematicians, ICM 2018 - Rio de Janeiro, Brésil Durée: 1 août 2018 → 9 août 2018 |
Nom | Proceedings of the International Congress of Mathematicians, ICM 2018 |
---|---|
Volume | 4 |
Une conférence | 2018 International Congress of Mathematicians, ICM 2018 |
---|---|
Pays/Territoire | Brésil |
La ville | Rio de Janeiro |
période | 1/08/18 → 9/08/18 |
Résultats de recherche: Livre/Rapport/Revue › Livre
Résultats de recherche: Contribution à un journal/une revue › Article › Revue par des pairs
Résultats de recherche: Contribution à un journal/une revue › Article › Revue par des pairs
Toint, P. (Co-investigateur), Gould, N. I. M. (Co-investigateur) & Cartis, C. (Co-investigateur)
1/11/08 → …
Projet: Recherche
Sartenaer, A. (Co-investigateur) & Toint, P. (Co-investigateur)
1/01/87 → …
Projet: Axe de recherche