Worst-case evaluation complexity and optimality of second-order methods for nonconvex smooth optimization

Coralia Cartis, Nicholas I.M. Gould, Philippe Toint

Résultats de recherche: Contribution dans un livre/un catalogue/un rapport/dans les actes d'une conférenceArticle dans les actes d'une conférence/un colloque

Résumé

We establish or refute the optimality of inexact second-order methods for unconstrained nonconvex optimization from the point of view of worst-case evaluation complexity, improving and generalizing our previous results. To this aim, we consider a new general class of inexact second-order algorithms for unconstrained optimization that includes regularization and trust-region variations of Newton’s method as well as of their linesearch variants. For each method in this class and arbitrary accuracy threshold ∊ 2 (0; 1), we exhibit a smooth objective function with bounded range, whose gradient is globally Lipschitz continuous and whose Hessian is α-Hölder continuous (for given α 2 [0; 1]), for which the method in question takes at least b∊-(2+α)/(1+α)c function evaluations to generate a first iterate whose gradient is smaller than ∊ in norm. Moreover, we also construct another function on which Newton’s takes b∊-2c evaluations, but whose Hessian is Lipschitz continuous on the path of iterates. These examples provide lower bounds on the worst-case evaluation complexity of methods in our class when applied to smooth problems satisfying the relevant assumptions. Furthermore, for α = 1, this lower bound is of the same order in ∊ as the upper bound on the worst-case evaluation complexity of the cubic regularization method and other algorithms in a class of methods recently proposed by Curtis, Robinson and Samadi or by Royer and Wright, thus implying that these methods have optimal worst-case evaluation complexity within a wider class of second-order methods, and that Newton’s method is suboptimal.

langue originaleAnglais
titreInvited Lectures
rédacteurs en chefBoyan Sirakov, Paulo Ney de Souza, Marcelo Viana
EditeurWorld Scientific Publishing Co Pte Ltd
Pages3729-3768
Nombre de pages40
ISBN (Electronique)9789813272934
Etat de la publicationPublié - 1 janv. 2018
Evénement2018 International Congress of Mathematicians, ICM 2018 - Rio de Janeiro, Brésil
Durée: 1 août 20189 août 2018

Série de publications

NomProceedings of the International Congress of Mathematicians, ICM 2018
Volume4

Une conférence

Une conférence2018 International Congress of Mathematicians, ICM 2018
Pays/TerritoireBrésil
La villeRio de Janeiro
période1/08/189/08/18

Empreinte digitale

Examiner les sujets de recherche de « Worst-case evaluation complexity and optimality of second-order methods for nonconvex smooth optimization ». Ensemble, ils forment une empreinte digitale unique.

Contient cette citation