Versatile Self-Adapting Boronic Acids for H-Bond Recognition: From Discrete to Polymeric Supramolecules

Irene Georgiou, Simon Kervyn De Meerendre, Alexandre Rossignon, Federica De Leo, Johan Wouters, Gilles Bruylants, Davide Bonifazi

Résultats de recherche: Contribution à un journal/une revueArticleRevue par des pairs


Because of the peculiar dynamic covalent reactivity of boronic acids to form tetraboronate derivatives, interest in using their aryl derivatives in materials science and supramolecular chemistry has risen. Nevertheless, their ability to form H-bonded complexes has been only marginally touched. Herein we report the first solution and solid-state binding studies of the first double-H-bonded DD·AA-type complexes of a series of aromatic boronic acids that adopt a syn-syn conformation with suitable complementary H-bonding acceptor partners. The first determination of the association constant (Ka) of ortho-substituted boronic acids in solution showed that Ka for 1:1 association is in the range between 300 and 6900 M-1. Crystallization of dimeric 1:1 and trimeric 1:2 and 2:1 complexes enabled an in-depth examination of these complexes in the solid state, proving the selection of the -B(OH)2 syn-syn conformer through a pair of frontal H-bonds with the relevant AA partner. Non-ortho-substituted boronic acids result in "flat" complexes. On the other hand, sterically demanding analogues bearing ortho substituents strive to retain their recognition properties by rotation of the ArB(OH)2 moiety, forming "T-shaped" complexes. Solid-state studies of a diboronic acid and a tetraazanaphthacene provided for the first time the formation of a supramolecular H-bonded polymeric ribbon. On the basis of the conformational dynamicity of the -B(OH)2 functional group, it is expected that these findings will also open new possibilities in metal-free catalysis or organic crystal engineering, where double-H-bonding donor boronic acids could act as suitable organocatalysts or templates for the development of functional materials with tailored organizational properties.

langue originaleAnglais
Pages (de - à)2710-2727
Nombre de pages18
journalJournal of the American Chemical Society
Numéro de publication7
Les DOIs
Etat de la publicationPublié - 22 févr. 2017

Empreinte digitale

Examiner les sujets de recherche de « Versatile Self-Adapting Boronic Acids for H-Bond Recognition: From Discrete to Polymeric Supramolecules ». Ensemble, ils forment une empreinte digitale unique.

Contient cette citation