Résumé
With the advent of high-performance black-box models, interpretability is becoming a hot topic today in machine learning. While a lot of research is
done on interpretability, machine learning researchers do not have precise guidelines for setting up user-based experiments. This paper provides well-established guidelines from the human-computer interaction community.
done on interpretability, machine learning researchers do not have precise guidelines for setting up user-based experiments. This paper provides well-established guidelines from the human-computer interaction community.
langue originale | Anglais |
---|---|
titre | EGC Workshop on Advances in Interpretable Machine Learning and Artificial Intelligence |
Lieu de publication | Metz, France |
Etat de la publication | Publié - 2019 |
Empreinte digitale
Examiner les sujets de recherche de « User-Based Experiment Guidelines for Measuring Interpretability in Machine Learning ». Ensemble, ils forment une empreinte digitale unique.Thèses de l'étudiant
-
Interpretability and Explainability in Machine Learning and their Application to Nonlinear Dimensionality Reduction
Bibal, A. (Auteur), FRENAY, B. (Promoteur), VANHOOF, W. (Président), Cleve, A. (Jury), Dumas, B. (Jury), Lee, J. A. (Jury) & Galarraga, L. (Jury), 16 nov. 2020Student thesis: Doc types › Docteur en Sciences
Fichier