Updating the regularization parameter in the adaptive cubic regularization algorithm

Nick Gould, M. Porcelli, Philippe Toint

Résultats de recherche: Contribution à un journal/une revueArticle

104 Téléchargements (Pure)


The adaptive cubic regularization method (Cartis et al. in Math. Program. Ser. A 127(2):245-295, 2011; Math. Program. Ser. A. 130(2):295-319, 2011) has been recently proposed for solving unconstrained minimization problems. At each iteration of this method, the objective function is replaced by a cubic approximation which comprises an adaptive regularization parameter whose role is related to the local Lipschitz constant of the objective's Hessian. We present new updating strategies for this parameter based on interpolation techniques, which improve the overall numerical performance of the algorithm. Numerical experiments on large nonlinear least-squares problems are provided. © 2011 Springer Science+Business Media, LLC.
langue originaleAnglais
Pages (de - à)1-22
Nombre de pages22
journalComputational Optimization and Applications
Numéro de publication1
Les DOIs
Etat de la publicationPublié - 1 sept. 2012

Empreinte digitale Examiner les sujets de recherche de « Updating the regularization parameter in the adaptive cubic regularization algorithm ». Ensemble, ils forment une empreinte digitale unique.

Contient cette citation