Turing instabilities on Cartesian product networks

Malbor Asllani, Daniel M. Busiello, Timoteo Carletti, Duccio Fanelli, Gwendoline Planchon

Résultats de recherche: Contribution à un journal/une revueArticleRevue par des pairs

53 Téléchargements (Pure)

Résumé

The problem of Turing instabilities for a reaction-diffusion system defined on a complex Cartesian product network is considered. To this end we operate in the linear regime and expand the time dependent perturbation on a basis formed by the tensor product of the eigenvectors of the discrete Laplacian operators, associated to each of the individual networks that build the Cartesian product. The dispersion relation which controls the onset of the instability depends on a set of discrete wavelengths, the eigenvalues of the aforementioned Laplacians. Patterns can develop on the Cartesian network, if they are supported on at least one of its constitutive sub-graphs. Multiplex networks are also obtained under specific prescriptions. In this case, the criteria for the instability reduce to compact explicit formulae. Numerical simulations carried out for the Mimura-Murray reaction kinetics confirm the adequacy of the proposed theory.
langue originaleAnglais
Numéro d'article5:12927
Pages (de - à)1
Nombre de pages10
journalScientific Reports
Volume5
Numéro de publication12927
Les DOIs
Etat de la publicationPublié - 6 août 2015

Empreinte digitale Examiner les sujets de recherche de « Turing instabilities on Cartesian product networks ». Ensemble, ils forment une empreinte digitale unique.

Contient cette citation