Projets par an
Résumé
Mapping behaviours to the features they relate to is a prerequisite for variability-intensive systems (VIS) reverse engineering. Manually providing this whole mapping is labour-intensive. In black-box scenarios, only execution traces are available (e.g., process mining). In our previous work, we successfully experimented with variant-based mapping using supervised machine learning (ML) to identify the variants responsible of the production of a given execution trace, and demonstrated that recurrent neural networks (RNNs) work well (≥ 80% accuracy) when trained on datasets in which we label execution traces with variants. However, this mapping (i) may not scale to large VIS because of combinatorial explosion and (ii) makes the internal ML representation hard to understand. In this short paper, we discuss the design of a novel approach: feature-based mapping learning.
langue originale | Anglais |
---|---|
titre | VaMoS 2024, Proceedings - 18th International Working Conference on Variability Modelling of Software-Intensive Systems |
Lieu de publication | Bern, Switzerland |
Editeur | ACM Press |
Pages | 152-154 |
Nombre de pages | 3 |
ISBN (Electronique) | 9798400708770 |
Les DOIs | |
Etat de la publication | Publié - 7 févr. 2024 |
Evénement | 18th International Working Conference on Variability Modelling of Software-Intensive Systems (VaMoS 2024) - Bern, Suisse Durée: 7 févr. 2024 → 9 févr. 2024 Numéro de conférence: 18 https://vamos2024.inf.unibe.ch |
Série de publications
Nom | Proceedings of the 18th International Working Conference on Variability Modelling of Software-Intensive Systems |
---|
Une conférence
Une conférence | 18th International Working Conference on Variability Modelling of Software-Intensive Systems (VaMoS 2024) |
---|---|
Pays/Territoire | Suisse |
La ville | Bern |
période | 7/02/24 → 9/02/24 |
Adresse Internet |
Empreinte digitale
Examiner les sujets de recherche de « Towards Feature-based ML-enabled Behaviour Location ». Ensemble, ils forment une empreinte digitale unique.-
CYBEREXCELLENCE: Le projet d’excellence de la cyber sécurité dans le cadre du plan de la Région Wallonne (CyberWal)
Colin, J.-N. (Responsable du Projet), Schobbens, P. Y. (Co-investigateur), Dejaeghere, J. (Chercheur), Devroey, X. (Co-investigateur), Nguyen, G. (Chercheur), Rochet, F. (Co-investigateur), Schumacher, L. (Co-investigateur), Knockaert, M. (Chercheur), Jacquet, J.-M. (Co-investigateur), Linden, I. (Responsable du Projet), Elkoulak, H. (Chercheur), Poeng, K. (Chercheur), Ouardi, D. (Chercheur), Goffaux, L. (Chercheur) & Barkallah, M. (Chercheur)
1/01/22 → 31/12/27
Projet: Recherche
-
VeriLearn: Verifying Learning Artificial Intelligence Systems
Heymans, P. (Responsable du Projet), Frénay, B. (Co-investigateur), Schobbens, P. Y. (Co-investigateur), Temple, P. (Chercheur), Nanfack, G. (Chercheur), Amrani, M. (Chercheur) & BIBAL, A. (Chercheur)
1/01/18 → 31/12/22
Projet: Recherche
Thèses de l'étudiant
-
Learning Featured Transition Systems
Fortz, S. (Auteur)Perrouin, G. (Promoteur), Heymans, P. (Copromoteur), Frénay, B. (Jury), Vanhoof, W. (Jury), Mousavi, M. (Jury) & ter Beek, M. H. (Jury), 22 sept. 2023Student thesis: Doc types › Docteur en Sciences
Fichier