Towards an experimental proof of superhydrophobicity enhanced by quantum fluctuations freezing on a broadband-absorber metamaterial

M. Sarrazin, I. Septembre, A. Hendrickx, N. Reckinger, L. Dellieu, G. Fleury, C. Seassal, R. Mazurczyk, S. Faniel, S. Devouge, M. Voue, O. Deparis

Résultats de recherche: Contribution à un journal/une revueArticle

3 Téléchargements (Pure)

Résumé

Previous theoretical works suggested that superhydrophobicity could be enhanced through partial inhibition of the quantum vacuum modes at the surface of a broadband-absorber metamaterial which acts in the extreme ultraviolet frequency domain. This effect would then compete with the classical Cassie-Baxter interpretation of superhydrophobicity. In this article, we first theoretically establish the expected phenomenological features related to such a kind of "quantum" superhydrophobicity. Then, relying on this theoretical framework, we experimentally study patterned silicon surfaces on which organosilane molecules were grafted, all the coated surfaces having similar characteristic pattern sizes but different profiles. Some of these surfaces can indeed freeze quantum photon modes while others cannot. While the latter ones allow hydrophobicity, only the former ones allow for superhydrophobicity. We believe these results lay the groundwork for further complete assessment of superhydrophobicity induced by quantum fluctuations freezing.
langue originaleAnglais
journalArXiv pre-print
Etat de la publicationSoumis - 23 juil. 2020

Contient cette citation

Sarrazin, M., Septembre, I., Hendrickx, A., Reckinger, N., Dellieu, L., Fleury, G., Seassal, C., Mazurczyk, R., Faniel, S., Devouge, S., Voue, M., & Deparis, O. (2020). Towards an experimental proof of superhydrophobicity enhanced by quantum fluctuations freezing on a broadband-absorber metamaterial. Manuscrit envoyé pour publication.