Projets par an
Résumé
In recent years, an increasing number of fully organic molecules capable of thermally activated delayed fluorescence (TADF) have been reported, often with very small or even inverted singlet-triplet (INVEST) energy gaps. These molecules typically exhibit complex photophysics due to the close energy levels of multiple singlet and triplet states, which create various transition pathways toward emission. A predictive model for the rates of these transitions is thus essential for assessing the suitability of new materials for light-emitting devices. Quantum Dynamics (QD) calculations are ideal for this purpose, as they include quantum effects, without the limitations of first-order perturbative approaches, also allowing taking into account more than two electronic states at once. However, the huge computational demands of QD methodologies, especially for large molecules, currently limit their use as a standard tool. To address this problem, we here employ a strategy that allows us to include almost the whole set of the vibrational coordinates by selecting the key elements of the Hilbert space that significantly impact dynamics, thereby hugely reducing the computational burden. Application of this protocol to two relatively large INVEST molecules reveals that internal conversion in these systems is very fast, making indirect emissive pathways a possible channel for the population of the S1 state. More importantly, this study demonstrates that the dynamics can be accurately described even with a significantly reduced vibrational space, thus allowing quantum dynamics calculations that yield accurate transition rates in a few minutes of computational time.
langue originale | Anglais |
---|---|
Pages (de - à) | 11042-11050 |
Nombre de pages | 9 |
journal | The Journal of Physical Chemistry Letters |
Volume | 15 |
Numéro de publication | 44 |
Les DOIs | |
Etat de la publication | Publié - 7 nov. 2024 |
Empreinte digitale
Examiner les sujets de recherche de « Toward Efficient Modeling of Nonradiative Decay in Extended INVEST: Overcoming Computational Challenges in Quantum Dynamics Simulations ». Ensemble, ils forment une empreinte digitale unique.Projets
- 2 Terminé
-
AMANDA: Modélisation atomistique des propriétés optoélectroniques et des processus de conversion de spin dans des composés basés sur un coeur triangulène pour des applications émettrices de lumière
Ricci, G. (Responsable du Projet) & Olivier, Y. (Responsable du Projet)
1/01/23 → 30/09/24
Projet: Recherche
-
Renouvellement d’équipements pour le Consortium des Equipements de Calcul Intensif (CECI)
Bontempi, G. (Responsable du Projet), CHAMPAGNE, B. (CoPI), Geuzaine , C. (CoPI), RIGNANESE, G. M. (CoPI) & Lazzaroni, R. (CoPI)
1/01/22 → 31/12/23
Projet: Recherche
Équipement
-
Plateforme Technologique Calcul Intensif
Champagne, B. (!!Manager)
Plateforme technologique Calcul intensifEquipement/installations: Plateforme technolgique