Projets par an
Résumé
In this paper, we show that the dynamics of homogeneous and isotropic Friedmann-
Lematre universes can be studied with population dynamics, in particular with the generalized Lotka-Volterra equation where the competitive species are the barotropic fluids filling the Universe. Without coupling between those fluids, Lotka-Volterra formulation offers a pedagogical way to interpret usual Friedmann-Lematre cosmological dynamics. When the cosmological fluids are coupled however, we establish new dynamical properties of Friedmann-Lematre universes consisting of cycles between its interacting components. This provides a new asymptotic behavior for cosmic expansion in presence of coupled species, beyond the standard de Sitter, Einstein-de Sitter and Milne cosmologies. Finally, we conjecture that chaos can appear for at least four interacting fluids.
Lematre universes can be studied with population dynamics, in particular with the generalized Lotka-Volterra equation where the competitive species are the barotropic fluids filling the Universe. Without coupling between those fluids, Lotka-Volterra formulation offers a pedagogical way to interpret usual Friedmann-Lematre cosmological dynamics. When the cosmological fluids are coupled however, we establish new dynamical properties of Friedmann-Lematre universes consisting of cycles between its interacting components. This provides a new asymptotic behavior for cosmic expansion in presence of coupled species, beyond the standard de Sitter, Einstein-de Sitter and Milne cosmologies. Finally, we conjecture that chaos can appear for at least four interacting fluids.
langue originale | Anglais |
---|---|
Lieu de publication | Namur |
Editeur | Namur center for complex systems |
Nombre de pages | 18 |
Volume | 4 |
Edition | 5 |
Etat de la publication | Publié - 4 juin 2013 |
Série de publications
Nom | naXys Technical Report Series |
---|---|
Editeur | University of Namur |
Numéro | 5 |
Volume | 4 |
mots-clés
- dynamical systems, cosmology, population dynamics
Empreinte digitale
Examiner les sujets de recherche de « The Jungle Universe and its Twisting Species ». Ensemble, ils forment une empreinte digitale unique.Projets
- 2 Terminé
-
PAI n°P7/19 - DYSCO: Dynamical systems, control and optimization (DYSCO)
Winkin, J. (Co-investigateur), Blondel, V. (Responsable du Projet), Vandewalle, J. (Co-investigateur), Pintelon, R. M. (Co-investigateur), Sepulchre, R. (Co-investigateur), Vande Wouwer, A. (Co-investigateur) & Sartenaer, A. (Co-investigateur)
1/04/12 → 30/09/17
Projet: Recherche
-
ARCCOS - ARC11/15-040: The Interplay between dark energy and primordial inflation
Fuzfa, A. (Responsable du Projet) & Ringeval, C. (Co-investigateur)
1/09/11 → 31/08/15
Projet: Recherche
Thèses de l'étudiant
-
The Jungle Universe
Melot, L. (Auteur)Fuzfa, A. (Promoteur) & Pérez, J. (Copromoteur), 30 juin 2012Student thesis: Master types › Master en sciences mathématiques