The Influence Function of Graphical Lasso Estimators

Gaëtan Louvet, Jakob Raymaekers, Germain Van Bever, Ines Wilms

Résultats de recherche: Contribution à un journal/une revueArticleRevue par des pairs

Résumé

The precision matrix that encodes conditional linear dependency relations among a set of variables forms an important object of interest in multivariate analysis. Sparse estimation procedures for precision matrices such as the graphical lasso (Glasso) gained popularity as they facilitate interpretability, thereby separating pairs of variables that are conditionally dependent from those that are independent (given all other variables). Glasso lacks, however, robustness to outliers. To overcome this problem, one typically applies a robust plug-in procedure where the Glasso is computed from a robust covariance estimate instead of the sample covariance, thereby providing protection against outliers. These estimators are studied theoretically, by deriving and comparing their influence function, sensitivity curve and asymptotic variance.

langue originaleAnglais
journalEconometrics and Statistics
Les DOIs
Etat de la publicationPublié - 6 avr. 2023

Empreinte digitale

Examiner les sujets de recherche de « The Influence Function of Graphical Lasso Estimators ». Ensemble, ils forment une empreinte digitale unique.

Contient cette citation