Synthesis, characterization, and photoinduced electron transfer processes of orthogonal ruthenium phthalocyanine-fullerene assemblies

M. Salomé Rodríguez-Morgade, Marta E. Plonska-Brzezinska, Andreas J. Athans, Esther Carbonell Llopis, Gustavo De Miguel, Dirk M. Guldi, Luis Echegoyen, Tomás Torres

Résultats de recherche: Contribution à un journal/une revueArticleRevue par des pairs


The convergent synthesis, electrochemical characterization, and photophysical studies of phthalocyanine-fullerene hybrids 3-5 bearing an orthogonal geometry (Chart 2) are reported. These donor-acceptor arrays have been assembled through metal coordination of linear fullerene mono- and bispyridyl ligands to ruthenium(II) phthalocyanines. The hybrid [Ru(CO)(C 60Py)Pc] (3) and the triad [Ru2(CO)2(C 60Py2)Pc2] (5) were prepared by treatment of the phthalocyanine 6 with the mono- and hexakis-substituted C 60-pyridyl ligands 1 and 2, respectively. The triad [Ru(C 60Py)2Pc] (4) was prepared in a similar manner from the monosubstituted C60-pyridyl ligand 1 and the phthalocyanine precursor 7. The simplicity of this versatile synthetic approach allows to determine the influence of the donor and acceptor ratio in the radical ion pair state lifetime. The chemical, electrochemical, and photophysical characterization of the phthalocyanine-fullerene hybrids 3-5 was conducted using 1H and 13C NMR, UV/vis, and IR spectroscopies, as well as mass spectrometry, cyclic voltammetry, femtosecond transient absorption studies, and nanosecond laser flash photolysis experiments. Arrays 3-5 exhibit electronic coupling between the two electroactive components in the ground state, which is modulated by the axial CO and 4-pyridylfulleropyrrolidine ligands. With respect to the excited state, we have demonstrated that RuPc/C60 electron donor-acceptor hybrids are a versatile platform to fine-tune the outcome and dynamics of charge transfer processes. The use of ruthenium(II) phthalocyanines instead of the corresponding zinc(II) complexes allows the suppression of energy wasting and unwanted charge recombination, affording radical ion pair state lifetimes on the order of hundreds of nanoseconds for the C60- monoadduct-based complexes 3 and 4. For the hexakis-substituted C60 unit 2, the reduction potential is shifted cathodically, thus raising the radical ion pair state energy. However, the location of the RuPc triplet excited state is not high enough, and still offers a rapid deactivation of the radical ion pair state.

langue originaleAnglais
Pages (de - à)10484-10496
Nombre de pages13
journalJournal of the American Chemical Society
Numéro de publication30
Les DOIs
Etat de la publicationPublié - 5 août 2009
Modification externeOui

Empreinte digitale

Examiner les sujets de recherche de « Synthesis, characterization, and photoinduced electron transfer processes of orthogonal ruthenium phthalocyanine-fullerene assemblies ». Ensemble, ils forment une empreinte digitale unique.

Contient cette citation