Projets par an
Résumé
In this work, we present a symplectic integration scheme to numerically compute space debris motion. Such an integrator is particularly suitable to obtain reliable trajectories of objects lying on high orbits, especially geostationary ones. Indeed, it has already been demonstrated that such objects could stay there for hundreds of years. Our model takes into account the Earth's gravitational potential, lunisolar and planetary gravitational perturbations and direct solar radiation pressure. Based on the analysis of the energy conservation and on a comparison with a high order nonsymplectic integrator, we show that our algorithm allows us to use large time steps and keep accurate results. We also propose an innovative method to model Earth's shadow crossings by means of a smooth shadow function. In the particular framework of symplectic integration, such a function needs to be included analytically in the equations of motion in order to prevent numerical drifts of the energy. For the sake of completeness, both cylindrical shadows and penumbra transitions models are considered. We show that both models are not equivalent and that big discrepancies actually appear between associated orbits, especially for high areatomass ratios.
langue originale  Anglais 

Pages (de  à)  14721486 
Nombre de pages  15 
journal  Advances in Space Research 
Volume  49 
Numéro de publication  10 
Etat de la publication  Publié  2012 
Empreinte digitale Examiner les sujets de recherche de « Symplectic integration of space debris motion considering several Earth's shadowing models ». Ensemble, ils forment une empreinte digitale unique.
Projets


GTIS: Groupe de Travail sur les Intégrateurs Symplectiques.
BOREUX, J., Carletti, T., COMPERE, A., D'HOEDT, S., DELSATE, N., DUFEY, J., Hubaux, C., LEMAITRE, A., LIBERT, A. & NOYELLES, B.
14/11/08 → …
Projet: Recherche

ORDER: Dynamique à long terme des débris spatiaux
Carletti, T., Hubaux, C. & LEMAITRE, A.
1/10/09 → 30/09/13
Projet: Projet de thèse