Supramolecular [60]fullerene chemistry on surfaces

Davide Bonifazi, Olivier Enger, François Diederich

Résultats de recherche: Contribution à un journal/une revueArticleRevue par des pairs


This critical review documents the exceptional range of research avenues in 60fullerene-based monolayers showing unique and spectacular physicochemical properties which prompted such materials to have potential applications in several directions, ranging from sensors and photovoltaic cells to nanostructured devices for advanced electronic applications, that have been pursued during the past decade. It illustrates how progress in covalent 60fullerene functionalisation led to the development of spectacular surface-immobilised architectures, including dyads and triads for photoinduced electron and energy transfer, self-assembled on a wide variety of surfaces. All of these molecular assemblies and supramolecular arrays feature distinct properties as a consequence of the presence of different molecular units and their spatial arrangement. Since the properties of 60fullerene-containing films are profoundly controlled by the deposition conditions, substrate of adsorption, and influenced by impurities or disordered surface structures, the progress of such new 60fullerene-based materials strongly relies on the development of new versatile and broad preparative methodologies. Therefore, the systematic exploration of the most common approaches to prepare and characterise 60fullerene-containing monolayers embedded into two- or three-dimensional networks will be reviewed in great detail together with their main limitations. Recent investigations hinting at potential technological applications addressing many important fundamental issues, such as a better understanding of interfacial electron transfer, ion transport in thin films, photovoltaic devices and the dynamics associated with monolayer self-assembly, are also highlighted. © The Royal Society of Chemistry 2007.

langue originaleAnglais
Pages (de - à)390-414
Nombre de pages25
journalChemical Society Reviews
Numéro de publication2
Les DOIs
Etat de la publicationPublié - 6 févr. 2007

Empreinte digitale

Examiner les sujets de recherche de « Supramolecular [60]fullerene chemistry on surfaces ». Ensemble, ils forment une empreinte digitale unique.

Contient cette citation