Sufficient conditions of endemic threshold on metapopulation networks

Taro Takaguchi, Renaud Lambiotte

Résultats de recherche: Contribution à un journal/une revueArticleRevue par des pairs


In this paper, we focus on susceptible-infected-susceptible dynamics on metapopulation networks, where nodes represent subpopulations, and where agents diffuse and interact. Recent studies suggest that heterogeneous network structure between elements plays an important role in determining the threshold of infection rate at the onset of epidemics, a fundamental quantity governing the epidemic dynamics. We consider the general case in which the infection rate at each node depends on its population size, as shown in recent empirical observations. We first prove that a sufficient condition for the endemic threshold (i.e., its upper bound), previously derived based on a mean-field approximation of network structure, also holds true for arbitrary networks. We also derive an improved condition showing that networks with the rich-club property (i.e., high connectivity between nodes with a large number of links) are more prone to disease spreading. The dependency of infection rate on population size introduces a considerable difference between this upper bound and estimates based on mean-field approximations, even when degree-degree correlations are considered. We verify the theoretical results with numerical simulations.

langue originaleAnglais
Pages (de - à)134-143
Nombre de pages10
journalJournal of Theoretical Biology
Les DOIs
Etat de la publicationPublié - 7 sept. 2015

Empreinte digitale

Examiner les sujets de recherche de « Sufficient conditions of endemic threshold on metapopulation networks ». Ensemble, ils forment une empreinte digitale unique.

Contient cette citation