Spectral pruning of fully connected layers

Lorenzo Giambagli, Lorenzo Buffoni, Lorenzo Chicchi, Enrico Civitelli, Duccio Fanelli

Résultats de recherche: Contribution à un journal/une revueArticleRevue par des pairs

30 Téléchargements (Pure)

Résumé

Training of neural networks can be reformulated in spectral space, by allowing eigenvalues and eigenvectors of the network to act as target of the optimization instead of the individual weights. Working in this setting, we show that the eigenvalues can be used to rank the nodes’ importance within the ensemble. Indeed, we will prove that sorting the nodes based on their associated eigenvalues, enables effective pre- and post-processing pruning strategies to yield massively compacted networks (in terms of the number of composing neurons) with virtually unchanged performance. The proposed methods are tested for different architectures, with just a single or multiple hidden layers, and against distinct classification tasks of general interest.
langue originaleAnglais
Numéro d'article11201
journalScientific Reports
Volume12
Numéro de publication1
Les DOIs
Etat de la publicationPublié - 1 juil. 2022

Empreinte digitale

Examiner les sujets de recherche de « Spectral pruning of fully connected layers ». Ensemble, ils forment une empreinte digitale unique.
  • Spectral Tools for Neural Networks

    Giambagli, L., 20 juin 2022.

    Résultats de recherche: Contribution à un événement scientifique (non publié)PosterRevue par des pairs

Contient cette citation