Solid Aluminum Borohydrides as Perspective Hydrogen Stores

Iurii Dovgaliuk, Damir Safin, Nikolay Tumanov, Fabrice Morelle, Adel Moulai, Radovan Cerný, Zbigniew Lodziana, Michel Devillers, Yaroslav Filinchuk

Résultats de recherche: Contribution à un journal/une revueArticle

Résumé

Metal borohydrides are intensively researched as high
capacity hydrogen storage materials. Aluminum is a cheap, light and
abundant element and Al3+ can be a template for reversible
dehydrogenation. However, Al(BH4)3, containing 16.9 weight % of
hydrogen, has a low boiling point, is explosive on air and has poor
storage stability. We present a new family of mixed-cation
borohydrides M[Al(BH4)4], all solid at ambient conditions. Their
thermal decomposition properties show diverse behavior: Al(BH4)3 is
released for M = Li+, Na+, while heavier derivatives evolve hydrogen
and diborane. NH4[Al(BH4)4], containing protic and hydridic
hydrogens, has the lowest decomposition temperature of 35 °C and
yields Al(BH4)3·NHBH and hydrogen. The decomposition
temperatures, correlated with cations' ionic potential, show that
M[Al(BH4)4] are in the most practical stability window. This family of
solids with convenient and versatile properties puts aluminum
borohydride chemistry in the mainstream of the hydrogen storage
research, e.g. for the development of reactive hydride composites
with increased hydrogen content.
langueAnglais
journalChemSusChem
Les DOIs
étatE-pub ahead of print - 6 oct. 2017

Empreinte digitale

Borohydrides
Aluminum
Hydrogen
aluminum
hydrogen
Hydrogen storage
Cations
Positive ions
Decomposition
Boiling point
cation
Dehydrogenation
decomposition
Hydrides
thermal decomposition
Pyrolysis
Metals
Derivatives
explosive
Temperature

Citer ceci

Dovgaliuk, I., Safin, D., Tumanov, N., Morelle, F., Moulai, A., Cerný, R., ... Filinchuk, Y. (2017). Solid Aluminum Borohydrides as Perspective Hydrogen Stores. DOI: 10.1002/cssc.201701629
Dovgaliuk, Iurii ; Safin, Damir ; Tumanov, Nikolay ; Morelle, Fabrice ; Moulai, Adel ; Cerný, Radovan ; Lodziana, Zbigniew ; Devillers, Michel ; Filinchuk, Yaroslav. / Solid Aluminum Borohydrides as Perspective Hydrogen Stores. Dans: ChemSusChem. 2017
@article{470f16726ac645ce946aff71ed12466f,
title = "Solid Aluminum Borohydrides as Perspective Hydrogen Stores",
abstract = "Metal borohydrides are intensively researched as highcapacity hydrogen storage materials. Aluminum is a cheap, light andabundant element and Al3+ can be a template for reversibledehydrogenation. However, Al(BH4)3, containing 16.9 weight {\%} ofhydrogen, has a low boiling point, is explosive on air and has poorstorage stability. We present a new family of mixed-cationborohydrides M[Al(BH4)4], all solid at ambient conditions. Theirthermal decomposition properties show diverse behavior: Al(BH4)3 isreleased for M = Li+, Na+, while heavier derivatives evolve hydrogenand diborane. NH4[Al(BH4)4], containing protic and hydridichydrogens, has the lowest decomposition temperature of 35 °C andyields Al(BH4)3·NHBH and hydrogen. The decompositiontemperatures, correlated with cations' ionic potential, show thatM[Al(BH4)4] are in the most practical stability window. This family ofsolids with convenient and versatile properties puts aluminumborohydride chemistry in the mainstream of the hydrogen storageresearch, e.g. for the development of reactive hydride compositeswith increased hydrogen content.",
author = "Iurii Dovgaliuk and Damir Safin and Nikolay Tumanov and Fabrice Morelle and Adel Moulai and Radovan Cern{\'y} and Zbigniew Lodziana and Michel Devillers and Yaroslav Filinchuk",
year = "2017",
month = "10",
day = "6",
doi = "10.1002/cssc.201701629",
language = "English",
journal = "ChemSusChem",
issn = "1864-5631",
publisher = "Wiley-VCH Verlag",

}

Dovgaliuk, I, Safin, D, Tumanov, N, Morelle, F, Moulai, A, Cerný, R, Lodziana, Z, Devillers, M & Filinchuk, Y 2017, 'Solid Aluminum Borohydrides as Perspective Hydrogen Stores' ChemSusChem. DOI: 10.1002/cssc.201701629

Solid Aluminum Borohydrides as Perspective Hydrogen Stores. / Dovgaliuk, Iurii; Safin, Damir; Tumanov, Nikolay; Morelle, Fabrice; Moulai, Adel; Cerný, Radovan; Lodziana, Zbigniew; Devillers, Michel; Filinchuk, Yaroslav.

Dans: ChemSusChem, 06.10.2017.

Résultats de recherche: Contribution à un journal/une revueArticle

TY - JOUR

T1 - Solid Aluminum Borohydrides as Perspective Hydrogen Stores

AU - Dovgaliuk,Iurii

AU - Safin,Damir

AU - Tumanov,Nikolay

AU - Morelle,Fabrice

AU - Moulai,Adel

AU - Cerný,Radovan

AU - Lodziana,Zbigniew

AU - Devillers,Michel

AU - Filinchuk,Yaroslav

PY - 2017/10/6

Y1 - 2017/10/6

N2 - Metal borohydrides are intensively researched as highcapacity hydrogen storage materials. Aluminum is a cheap, light andabundant element and Al3+ can be a template for reversibledehydrogenation. However, Al(BH4)3, containing 16.9 weight % ofhydrogen, has a low boiling point, is explosive on air and has poorstorage stability. We present a new family of mixed-cationborohydrides M[Al(BH4)4], all solid at ambient conditions. Theirthermal decomposition properties show diverse behavior: Al(BH4)3 isreleased for M = Li+, Na+, while heavier derivatives evolve hydrogenand diborane. NH4[Al(BH4)4], containing protic and hydridichydrogens, has the lowest decomposition temperature of 35 °C andyields Al(BH4)3·NHBH and hydrogen. The decompositiontemperatures, correlated with cations' ionic potential, show thatM[Al(BH4)4] are in the most practical stability window. This family ofsolids with convenient and versatile properties puts aluminumborohydride chemistry in the mainstream of the hydrogen storageresearch, e.g. for the development of reactive hydride compositeswith increased hydrogen content.

AB - Metal borohydrides are intensively researched as highcapacity hydrogen storage materials. Aluminum is a cheap, light andabundant element and Al3+ can be a template for reversibledehydrogenation. However, Al(BH4)3, containing 16.9 weight % ofhydrogen, has a low boiling point, is explosive on air and has poorstorage stability. We present a new family of mixed-cationborohydrides M[Al(BH4)4], all solid at ambient conditions. Theirthermal decomposition properties show diverse behavior: Al(BH4)3 isreleased for M = Li+, Na+, while heavier derivatives evolve hydrogenand diborane. NH4[Al(BH4)4], containing protic and hydridichydrogens, has the lowest decomposition temperature of 35 °C andyields Al(BH4)3·NHBH and hydrogen. The decompositiontemperatures, correlated with cations' ionic potential, show thatM[Al(BH4)4] are in the most practical stability window. This family ofsolids with convenient and versatile properties puts aluminumborohydride chemistry in the mainstream of the hydrogen storageresearch, e.g. for the development of reactive hydride compositeswith increased hydrogen content.

U2 - 10.1002/cssc.201701629

DO - 10.1002/cssc.201701629

M3 - Article

JO - ChemSusChem

T2 - ChemSusChem

JF - ChemSusChem

SN - 1864-5631

ER -

Dovgaliuk I, Safin D, Tumanov N, Morelle F, Moulai A, Cerný R et al. Solid Aluminum Borohydrides as Perspective Hydrogen Stores. ChemSusChem. 2017 oct. 6. Disponible �, DOI: 10.1002/cssc.201701629