Second-order convergence properties of trust-region methods using incomplete curvature information, with an application to multigrid optimization

    Résultats de recherche: Contribution à un journal/une revueArticleRevue par des pairs

    12 Téléchargements (Pure)

    Résumé

    Convergence properties of trust-region methods for unconstrained nonconvex optimization is considered in the case where information on the objective function's local curvature is incomplete, in the sense that it may be restricted to a fixed set of test directions and may not be available at every iteration. It is shown that convergence to local weak minimizers can still be obtained under some additional but algorithmically realistic conditions. These theoretical results are then applied to recursive multigrid trust-region methods, which suggests a new class of algorithms with guaranteed second-order convergence properties.
    langue originaleAnglais
    Pages (de - à)676-692
    Nombre de pages17
    journalJournal of Computational Mathematics
    Volume24
    Numéro de publication6
    Etat de la publicationPublié - 1 nov. 2006

    Empreinte digitale Examiner les sujets de recherche de « Second-order convergence properties of trust-region methods using incomplete curvature information, with an application to multigrid optimization ». Ensemble, ils forment une empreinte digitale unique.

    Contient cette citation