Rototranslational sum rules for electromagnetic hypershielding at the nuclei and related atomic Cartesian derivatives of the optical rotatory power

Résultats de recherche: Contribution à un journal/une revueArticleRevue par des pairs

Résumé

Two molecular properties, the nuclear electromagnetic hypershielding (ψ γ,αΒ ′) and the gradient of the electric dipole-magnetic dipole polarizability (∇ γ G ′), have been calculated using the time-dependent Hartree-Fock method. Provided the Hellmann-Feynman theorem is satisfied, these quantities are equivalent and are related through the ∇Iγ G αΒ ′ =e ZI ψ γ,αΒ ′I relation, where ZI is the atomic number of atom I and e the magnitude of the electron charge. In such a case, the determination of the nuclear electromagnetic hypershielding presents the computational advantage over the evaluation of the gradient of G αΒ ′ of requiring only the knowledge of nine mixed second-order derivatives of the density matrix with respect to both electric and magnetic fields (Dα,Β (-ω,ω)) instead of the 3N (N is the number of atoms) derivatives of the density matrix with respect to the Cartesian coordinates (D ). It is shown here for the H O molecule that very large basis sets such as the aug-cc-pVQZ or the R12 basis are required to satisfy the Hellmann-Feynman theorem. These basis set requirements have been substantiated by considering the corresponding rototranslational sum rules. The origin dependence of the rototranslational sum rules for the gradient of G αΒ ′ has then been theoretically described and verified for the H O molecule.
langue originaleAnglais
Pages (de - à)244107
Nombre de pages10
journalThe journal of chemical physics
Volume128
Numéro de publication24
Les DOIs
Etat de la publicationPublié - 1 janv. 2008

Empreinte digitale Examiner les sujets de recherche de « Rototranslational sum rules for electromagnetic hypershielding at the nuclei and related atomic Cartesian derivatives of the optical rotatory power ». Ensemble, ils forment une empreinte digitale unique.

Contient cette citation