Robust State Estimation for a Linear Reaction-Convection-Diffusion Equation under Unknown Disturbances

Habib Dimassi, Joseph J. Winkin, Alain Vande Wouwer

    Résultats de recherche: Contribution dans un livre/un catalogue/un rapport/dans les actes d'une conférenceArticle dans les actes d'une conférence/un colloque

    Résumé

    We propose a robust state estimation approach for a linear reaction-convection-diffusion equation under bounded unknown disturbances. Inspired by sliding mode theory, an adequate discontinuous input function is designed to compensate for the effect of the unknown disturbances. Based on Filippov's solutions theorem, we report the existence of generalized solutions to the estimation error system subject to the discontinuous input. Based on a Lyapunov stability analysis, we show the asymptotic convergence of the estimation error. The observer is then designed under more relaxed and realistic assumptions by replacing the discontinuous input by a continuous approximation and by using adaptive techniques to compensate for the upper bound on the bounded disturbances which are rather assumed to be unknown. Numerical simulations are performed to illustrate the effectiveness of the proposed robust estimation approach.

    langue originaleAnglais
    titre2018 IEEE Conference on Decision and Control, CDC 2018
    EditeurInstitute of Electrical and Electronics Engineers Inc.
    Pages4613-4618
    Nombre de pages6
    Volume2018-December
    ISBN (Electronique)9781538613955
    Les DOIs
    Etat de la publicationPublié - 18 janv. 2019
    Evénement57th IEEE Conference on Decision and Control, CDC 2018 - Miami, États-Unis
    Durée: 17 déc. 201819 déc. 2018

    Une conférence

    Une conférence57th IEEE Conference on Decision and Control, CDC 2018
    Pays/TerritoireÉtats-Unis
    La villeMiami
    période17/12/1819/12/18

    Empreinte digitale

    Examiner les sujets de recherche de « Robust State Estimation for a Linear Reaction-Convection-Diffusion Equation under Unknown Disturbances ». Ensemble, ils forment une empreinte digitale unique.

    Contient cette citation