Revealing geometric phases in modular and weak values with a quantum eraser

Mirko Cormann, Mathilde Remy, Branko Kolaric, Yves Caudano

Résultats de recherche: Contribution à un journal/une revueArticleRevue par des pairs

Résumé

We present a procedure to completely determine the complex modular values of arbitrary observables of pre- and postselected ensembles, which works experimentally for all measurement strengths and all postselected states. This procedure allows us to discuss the physics of modular and weak values in interferometric experiments involving a qubit meter. We determine both the modulus and the argument of the modular value for any measurement strength in a single step, by simultaneously controlling the visibility and the phase in a quantum eraser interference experiment. Modular and weak values are closely related. Using entangled qubits for the probed and meter systems, we show that the phase of the modular and weak values has a topological origin. This phase is completely defined by the intrinsic physical properties of the probed system and its time evolution. The physical significance of this phase can thus be used to evaluate the quantumness of weak values.

langue originaleAnglais
Numéro d'article042124
journalPhysical Review A - Atomic, Molecular, and Optical Physics
Volume93
Numéro de publication4
Les DOIs
Etat de la publicationPublié - 28 avr. 2016

Empreinte digitale

Examiner les sujets de recherche de « Revealing geometric phases in modular and weak values with a quantum eraser ». Ensemble, ils forment une empreinte digitale unique.

Contient cette citation