Refining asymptotic complexity bounds for nonconvex optimization methods, including why steepest descent is o(eps^{-2}) rather than O(eps^{-2})

Serge Gratton, Chee_Khian Sim, Philippe Toint

Résultats de recherche: Papier de travail

65 Téléchargements (Pure)

Résumé

We revisit the standard ``telescoping sum'' argument ubiquitous in the final steps of analyzing evaluation complexity of algorithms for smooth nonconvex optimization, and obtain a refined formulation of the resulting bound as a function of the requested accuracy eps. While bounds obtained using the standard argument typically are of the form O(eps^{-\alpha}) for some positive alpha, the refined results are of the form o(eps^{-\alpha}). We then explore to which known algorithms our refined bounds are applicable and finally describe an example showing how close the standard and refined bounds can be.
langue originaleAnglais
ÉditeurArxiv
Volume2408.09124
Etat de la publicationPublié - 20 août 2024

Empreinte digitale

Examiner les sujets de recherche de « Refining asymptotic complexity bounds for nonconvex optimization methods, including why steepest descent is o(eps^{-2}) rather than O(eps^{-2}) ». Ensemble, ils forment une empreinte digitale unique.

Contient cette citation