Recursive trust-region methods for multiscale nonlinear optimization

    Résultats de recherche: Contribution à un journal/une revueArticleRevue par des pairs

    318 Téléchargements (Pure)

    Résumé

    A class of trust-region methods is presented for solving unconstrained nonlinear and possibly nonconvex discretized optimization problems, like those arising in systems governed by partial differential equations. The algorithms in this class make use of the discretization level as a means of speeding up the computation of the step. This use is recursive, leading to true multilevel/multiscale optimization methods reminiscent of multigrid methods in linear algebra and the solution of partial differential equations. A simple algorithm of the class is then described and its numerical performance is shown to be numerically promising. This observation then motivates a proof of global convergence to first-order stationary points on the fine grid that is valid for all algorithms in the class. © 2008 Society for Industrial and Applied Mathematics.
    langue originaleAnglais
    Pages (de - à)414-444
    Nombre de pages31
    journalSIAM Journal on Optimization
    Volume19
    Numéro de publication1
    Les DOIs
    Etat de la publicationPublié - 1 janv. 2008

    Empreinte digitale Examiner les sujets de recherche de « Recursive trust-region methods for multiscale nonlinear optimization ». Ensemble, ils forment une empreinte digitale unique.

    Contient cette citation