RankMerging: Apprentissage supervisé de classements pour la prédiction de liens dans les grands réseaux sociaux

Résultats de recherche: Contribution dans un livre/un catalogue/un rapport/dans les actes d'une conférenceArticle dans les actes d'une conférence/un colloque

Résumé

Uncovering missing links in social networks is a difficult task because of their sparsity, and because links may represent different types of relationships, characterized by different structural patterns. In this paper, we define a simple supervised learning-to-rank framework, called RankMerging, which aims at combining information provided by various unsupervised rankings. As an illustration, we apply the method to the case of a cell phone service provider, which aims at discovering links among contractors of its competitors. We show that our method substantially improves the performance of the available classification methods.

Titre traduit de la contributionRankMerging: A supervised learning-to-rank for predicting links in large-scale social networks
langue originaleFrançais
titreExtraction et Gestion des Connaissances, EGC 2015
EditeurCambridge University Press
Pages395-400
Nombre de pages6
VolumeE.28
ISBN (Electronique)9782705690229
étatPublié - 1 janv. 2015
EvénementQuinzieme Conference Internationale Francophone sur l'Extraction et la Gestion des Connaissances, EGC 2015 - 15th International French-Speaking Conference on Knowledge Extraction and Management, EGC 2015 - Luxembourg, Luxembourg
Durée: 27 janv. 201530 janv. 2015

Une conférence

Une conférenceQuinzieme Conference Internationale Francophone sur l'Extraction et la Gestion des Connaissances, EGC 2015 - 15th International French-Speaking Conference on Knowledge Extraction and Management, EGC 2015
PaysLuxembourg
La villeLuxembourg
période27/01/1530/01/15

Empreinte digitale

Supervised learning
Contractors

Citer ceci

Tabourier, L., Libert, A-S., & Lambiotte, R. (2015). RankMerging: Apprentissage supervisé de classements pour la prédiction de liens dans les grands réseaux sociaux. Dans Extraction et Gestion des Connaissances, EGC 2015 (Vol E.28, p. 395-400). Cambridge University Press.
@inproceedings{23625a97baa24527a5f4198f5186c63b,
title = "RankMerging: Apprentissage supervis{\'e} de classements pour la pr{\'e}diction de liens dans les grands r{\'e}seaux sociaux",
abstract = "Uncovering missing links in social networks is a difficult task because of their sparsity, and because links may represent different types of relationships, characterized by different structural patterns. In this paper, we define a simple supervised learning-to-rank framework, called RankMerging, which aims at combining information provided by various unsupervised rankings. As an illustration, we apply the method to the case of a cell phone service provider, which aims at discovering links among contractors of its competitors. We show that our method substantially improves the performance of the available classification methods.",
author = "Lionel Tabourier and Anne-Sophie Libert and Renaud Lambiotte",
year = "2015",
month = "1",
day = "1",
language = "Fran{\cc}ais",
volume = "E.28",
pages = "395--400",
booktitle = "Extraction et Gestion des Connaissances, EGC 2015",
publisher = "Cambridge University Press",

}

Tabourier, L, Libert, A-S & Lambiotte, R 2015, RankMerging: Apprentissage supervisé de classements pour la prédiction de liens dans les grands réseaux sociaux. Dans Extraction et Gestion des Connaissances, EGC 2015. VOL. E.28, Cambridge University Press, p. 395-400, Quinzieme Conference Internationale Francophone sur l'Extraction et la Gestion des Connaissances, EGC 2015 - 15th International French-Speaking Conference on Knowledge Extraction and Management, EGC 2015, Luxembourg, Luxembourg, 27/01/15.

RankMerging : Apprentissage supervisé de classements pour la prédiction de liens dans les grands réseaux sociaux. / Tabourier, Lionel; Libert, Anne-Sophie; Lambiotte, Renaud.

Extraction et Gestion des Connaissances, EGC 2015. Vol E.28 Cambridge University Press, 2015. p. 395-400.

Résultats de recherche: Contribution dans un livre/un catalogue/un rapport/dans les actes d'une conférenceArticle dans les actes d'une conférence/un colloque

TY - GEN

T1 - RankMerging

T2 - Apprentissage supervisé de classements pour la prédiction de liens dans les grands réseaux sociaux

AU - Tabourier, Lionel

AU - Libert, Anne-Sophie

AU - Lambiotte, Renaud

PY - 2015/1/1

Y1 - 2015/1/1

N2 - Uncovering missing links in social networks is a difficult task because of their sparsity, and because links may represent different types of relationships, characterized by different structural patterns. In this paper, we define a simple supervised learning-to-rank framework, called RankMerging, which aims at combining information provided by various unsupervised rankings. As an illustration, we apply the method to the case of a cell phone service provider, which aims at discovering links among contractors of its competitors. We show that our method substantially improves the performance of the available classification methods.

AB - Uncovering missing links in social networks is a difficult task because of their sparsity, and because links may represent different types of relationships, characterized by different structural patterns. In this paper, we define a simple supervised learning-to-rank framework, called RankMerging, which aims at combining information provided by various unsupervised rankings. As an illustration, we apply the method to the case of a cell phone service provider, which aims at discovering links among contractors of its competitors. We show that our method substantially improves the performance of the available classification methods.

UR - http://www.scopus.com/inward/record.url?scp=84994589435&partnerID=8YFLogxK

M3 - Article dans les actes d'une conférence/un colloque

VL - E.28

SP - 395

EP - 400

BT - Extraction et Gestion des Connaissances, EGC 2015

PB - Cambridge University Press

ER -

Tabourier L, Libert A-S, Lambiotte R. RankMerging: Apprentissage supervisé de classements pour la prédiction de liens dans les grands réseaux sociaux. Dans Extraction et Gestion des Connaissances, EGC 2015. Vol E.28. Cambridge University Press. 2015. p. 395-400